

Case Study of Trend Mining in Transportation Research Record Articles

Subasish Das¹, Anandi Dutta², and Marcus A. Brewer¹

Transportation Research Record I-14 © National Academy of Sciences: Transportation Research Board 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0361198120936254 journals.sagepub.com/home/trr **SAGE**

This study employs two topic models to perform trend mining on an abundance of textual data to determine trends in research topics from immense collections of unstructured documents over the years. This study collected data from the titles and abstracts of the papers published in *Transportation Research Record: Journal of the Transportation Research Board*, since 1974. The content of these papers was ideal for examining research trends in various fields of research because it contains large textual data. In previous studies, exploratory analysis tools such as text mining were used to provide descriptive information about the data. However, this method does not provide researchers with quantifications of the topics and their correlations. Furthermore, the contents examined in this study are largely unstructured, and therefore they require faster machine learning algorithms to decipher them. For these reasons, the research team chose to employ two topic modeling tools, latent Dirichlet allocation and structural topic model, to perform trend mining. This analysis succeeded in extracting 20 main topics, identified by keywords, from the data. The research team also developed two interactive topic model visualization tools that can be used to extract topics from journal titles and abstracts, respectively. The findings from this study provide researchers with a further understanding of research patterns within ever-evolving area of transportation engineering studies.

The rising application of emerging technologies, the increasing number of peer-reviewed journals and conference proceedings, and the significant growth in interdisciplinary collaborations, all reflect the significance of the size and scope of transportation research. Transportation challenges and problems, however, have changed over time, and the scope of transportation research has also become more diverse. The domain of transportation research includes a broad inter-disciplinary coverage of topics, from classic topics such as signal control and traffic congestion to societal problems such as environmental justice and sustainability to new technologies such as big data analytics, connected vehicles, automated vehicles, and application of artificial intelligence. Because of the consistent evolution from the advances in solutions/technologies developed and the specific questions raised, transportation research has experienced an upsurge of research publications in recent decades.

Predicting future salient issues in any field of science that will dominate research is always a challenge, but as transportation research becomes more complex and cross-cutting, this challenge will increase. Research in relation to statistical models of co-occurrence of trending topics has led to the growth of different useful topic models. This efficient machine learning technique helps researchers find concealed trends inside unstructured larger textual contents. The Transportation Research Board (TRB) coordinates the most comprehensive and largest annual transportation conference in the world. Since its establishment in 1920 as the National Advisory Board on Highway Research, TRB has provided a platform to convert research results into applicable information about every facet pertaining to transportation engineering. Thousands of scientists, engineers, and other transportation practitioners and researchers from the private and public sectors and academia are all included in the TRB's various activities.

The *Transportation Research Record* (TRR) series is the official journal of the TRB and publishes technical papers that have been accepted for publication through a rigorous peer-review process refereed by TRB technical committees. These papers provide extensive documentation of the research activities undertaken by the transportation research community, and they provide a unique insight into the research topics that have remained active

Corresponding Author:

Subasish Das, s-das@tti.tamu.edu

¹Texas A&M Transportation Institute, Bryan, TX ²Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX

over the long term as well as topics that have recently emerged into the forefront.

To comprehend the research trends in the realm of complex transportation engineering, an analysis of TRR journal articles would be beneficial. By applying a latent Dirichlet allocation (LDA) model, this study presents an empirical analysis of 30,784 articles published in TRR from 1974 to 2019 to identify trends in topics, keywords, and authors over time.

Literature Review

In recent years, probabilistic topic models, such as LDA (1), have become a popular research tool to interpret large amounts of textual data. Researchers have noted the importance of topic models (2) in measuring latent linguistic significance. Most studies involving text mining analysis employ statistical topic models such as probabilistic latent semantic analysis (PLSA) (3), in addition to LDA (4). However, these models are unsupervised, meaning the explanatory variables and response variables are not clearly defined; this can result in topics that are not interpretable (5, 6).

To improve LDA and other conventional methods, researchers proposed a wide variety of knowledge-based topic models (7–14) and dynamic topic models (DTMs) (15–19). Furthermore, researchers examined the suitability of the automatic coherence measure of topic models and developed unsupervised models to improve the coherence score by using the word "co-occurrence" within a collection of texts (20). Researchers have also proposed DTMs in which time is a significant consideration, such as topic over time (TOT) (17) and dynamic mixture model (DMM), to mine dynamic patterns (4, 17, 18, 21). Additionally, several researchers have recently suggested nonparametric Bayesian models, based on Dirichlet process (DP), to consider space and time while developing the models (16–20).

McLaurin et al. (21) applied topic modeling to driving data and distinguished key associations between drivers with obstructive sleep apnea and normal drivers. Sun et al. (22) used the temporal doubly stochastic Dirichlet process mixture model and presented an unsupervised tracking algorithm to detect human mobility and car route. In their study, Sun and Yin (23) used an LDA model on the abstracts of journal articles to deduce 50 key topics. Their results indicated that the characterized topics are insightful.

Venkatraman et al. (24) investigated "differences between drivers" lateral responses in various events utilizing probabilistic topic modeling. Another worthwhile study of topic modeling in the transportation field was conducted by Das et al. (25) in which they studied topic changes of abstracts from papers presented at the TRB Annual Meeting from 2008 to 2014. Das et al. used text mining and topic modeling in several other transportation studies (26-29). Two recent studies used text mining and topic modeling TRB compendium papers and TRR papers (30, 31). In a recent study, Biehl (32) used both text mining and topic modeling techniques to investigate the publicity of non-motorized trip adoption utilizing several focus groups of the local residents in two locations: Chicago's Humboldt Park neighborhood and the suburb of Evanston. They combined conventional discourse analysis with popular natural language processing tools such as topic modeling and sentiment analysis.

The framework behind considering information or meta-data at corpus (i.e., a group of texts) level, in the modeling framework, uses the altercation of the prior distributions to partly pool knowledge amongst similar documents. Researchers have explored incorporating meta-data into models from various aspects: authortopic model (33, 34), topical content/ideology (35), geography (36), trend analysis (26), attitudes on self-driving cars (37), and aviation incident reports (38).

Topic Modeling

LDA

In 2003, Blei et al. developed the LDA model to address the issues found in the probabilistic latent semantic analysis (PLSI) model (4, 39, 40). Improving on the PLSI model, the LDA model uses a K-dimensional latent random variable. This variable presents the topic mixture ratio of the document by following the Dirichlet distribution. The LDA model is the most widely used of topic models (41).

The LDA model is more capable of matching the semantic conditions than other models. The parameter space of this model is simpler than the PLSI model. Additionally, this hierarchical model, with a more balanced configuration, avoids any overfitting criteria because its parameter space is not relevant to the number of training documents in LDA (41). This model is generally considered as a complete probability generative model (41, 42).

The authors mostly followed the study by Kim and Shim (43) for a brief overview of LDA. Consider U and D_u imply the set of users and the user $(u \in U)$ generated "bag of words." Consider V as the set of unique words showing in a bag of words D_u at least once for a user $u \in U$. It represents the set of latent topics where the number of topics is given as a parameter, Z. In this process, each user u has their own preference over the topics represented by a probabilistic distribution $\overrightarrow{\theta}_u$, which is a multinomial distribution over Z. Also, each topic z, having a multinomial distribution over V, can be denoted by $\overrightarrow{\mathcal{O}_z}$. Figure 1 illustrates the visualization of this framework. The generative process of this method can be defined, following Kim and Shim (43):

- For each topic z ∈ Z, consider a multinomial distribution Ø_z ~ Dir(β).
- For each user u ∈ U, consider a multinomial distribution Ø_u ~ Dir(α).
- For each word $w \in D_u$,
 - consider a topic $z \sim \text{Multinomial}(\overrightarrow{\theta_u})$.
 - consider a word w ~ Multinomial($\overline{\varnothing_z}$).

This modeling framework considers the multinomial distributions $\overrightarrow{\theta}_u$ and \overrightarrow{O}_z to be determined by conjugate prior distributions, known as Dirichlet distribution with parameters $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ respectively. Each *w* in D_u can be designated by first obtaining *z* with following the topic preference distribution $\overrightarrow{\theta}_u$. Next, selection of *w* from the corresponding distribution \overrightarrow{O}_z of the selected *z* can be determined. For this framework, the probability of *w* being produced by *u* can be determined by:

$$\int \operatorname{Dir}(\theta_u; \alpha) \left(\sum_{z=1}^{|Z|} \theta_{uz} \mathcal{O}_{zw} \right) d\theta_u$$

STM

In political science and linguistics, STM has been used for text data analysis (44-49). Both LDA and STM are Bayesian generative topic models. The assumption for both methods considers each topic as a distribution over words and each document as a mixture of corpus (collection of texts) based topics (1, 4, 44, 45). The algorithm of STM identifies document-level structure information to affect topical prevalence (for example, proportion of topics by document frequency) and topic content (distribution of the keywords in topics). It emphasizes the appropriate determination of investigating how covariates affect the content of text documents. The authors mostly followed the study by Hu et al. (50) for a brief overview of this section. A brief introduction on STM is described below and readers are advised to read companion papers (1, 4, 44, 45) for comprehensive theoretical details.

Figure 1 presents the technical differences between the frameworks of STM and LDA models. Each node is represented by a variable, which is labeled with its role in the data generating process. The shaded nodes are the real variables and the unshaded nodes are latent variables. The rectangles in Figure 1 indicate replication: $n \in \{1, 2, ..., N\}$ implies words within a document; $k \in \{1, 2, ..., K\}$ implies each topic with the assumption of selected topics as K; and $d \in \{1, 2, ..., D\}$ indexes the document indices. Figure 1 also shows that only node w (i.e., words in documents) is seen in both frameworks.

Figure 1. Latent Dirichlet allocation (LDA) and structural topic model (STM) frameworks. Source: Nan et al. (*50*).

The overall aim is to gain latent topic information from the observed words, W, by producing two key measures: per-document topic proportions, θ , and topic-word distributions, β . Figure 1 also shows that both models include three major elements: (i) topical prevalence parameters, (ii) the core language model, and (iii) topical content parameters (50). It is important to note that the core language model elements for both models are the same, where θ_d and $\beta_{d,k,v}$ imply the latent per-document topic proportions and per-corpus topic-word distributions, respectively; $z_{d,n}$ denotes the hidden topic assignment of each stated term; and $w_{d,n}$ implies the stated term, which is drawn from words indexed by $v \in \{1, 2, ..., V\}$. The core language model of both approaches follows the twostep generative process for each d in the corpus (1, 4, 50).

- Step 1: perform random choice of a distribution over topics for *d*.
- Step 2: for each w_n in d, (i) conduct random choice of $z_{d,n}$ from the distribution over topics θ_d in Step 1. (ii) conduct random choice of w_n from the corresponding distribution over the vocabulary $\beta_{d,k,v}$, where $k = z_{d,n}$.

Two measures (topical prevalence and topical content) differentiate between these models. Particularly, the topical prevalence measures in LDA are shared prior Dirichlet parameters $\alpha(\eta)$, while those of STM are replaced with prior structures specified in the form of generalized linear models parameterized by document specific covariates (44, 50). For both models, parameters can be estimated by methods such as partially-collapsed variational expectation-maximization algorithm.

There are two major differences between STM and LDA. First, with the help of STM, the researchers can introduce document-level covariates to parameters associated with topic prevalence to uncover document-topic proportions (44). Second, STM introduced document-level covariates to explore topic-word distributions as topic content parameters (44, 50, 51).

Methodology

Data Collection

The research team desired a robust, long-standing journal to conduct an analysis of trends for topics, authors, and keywords. The current study selected the TRR series based on its long history and its inclusion of a wide variety of subject matter. The TRR series was also attractive because of its rigorous review process and widespread use among both academia and practitioners. The research team used the Transport Research International Documentation (TRID) website to develop the databases for this study. All TRR articles are first saved in the research information system (RIS) format. Later, the database is converted into spreadsheet format. The columns in the database include the title of the paper, keywords, abstract, authors, and publication year. This analysis included 30,784 articles (see Table 1) published between 1974 and 2019. Publication years of the articles were extracted from TRID metadata.

Exploratory Text Mining

Prolific Authors and Co-Author Networks. The authors developed a web-based interactive visualization of the heatmap, shown in Figure 2, to list the top 25 most prolific authors of the TRR articles and illustrate the frequency of publication for each author (52). The authors are listed in alphabetical order by last name. The colors indicate the number of TRR articles published by each author by year. The light-yellow color, primarily shown toward the left side of the heat map, indicates the beginning of the scientific careers for these prolific authors. The colors indicate number of articles (low numbers in light yellow to large numbers in dark color by using 'inferno' color scale) published by the author in the given year. As shown in Figure 2, Serge Hoogendoorn published 18 TRR articles in 2016, which is the maximum number of TRR articles as an author or co-author in one year. Hani Mahmassani has published the highest number of TRR articles (a total of 183 articles) since 1984. Four of the listed researchers started their

Year	Number of articles	Total words in titles	Total words in abstracts
1974	368	3,002	52,494
1975	222	1,741	31,397
1976	623	5,256	96,121
1977	446	3,686	70,583
1978	479	4,080	80,370
1979	456	3,930	73,217
1980	474	4,006	71,791
1981	526	4,527	80,871
1982	589	4,947	98,103
1983	613	5,507	104,646
1984	607	5,306	93,568
1985	505	4,650	84.221
1986	542	4,934	88,476
1987	591	5,590	102.616
1988	543	5,146	92,709
1989	471	4.467	81.260
1990	587	5,579	102.819
1991	797	7,507	140,139
1992	615	5,888	110,179
1993	638	6,129	112,400
1994	605	5 935	114134
1995	614	6 0 2 6	114 238
1996	727	6 952	133 387
1997	595	6 046	113 570
1998	613	6313	115,072
1999	729	7516	142 228
2000	703	7,04	136 395
2000	676	7,161	127 888
2002	662	6 942	127,000
2002	759	8 096	150 420
2003	689	7 395	134 013
2005	834	9 2 7 4	163 373
2005	816	9 070	160,726
2007	825	9 2 7 7	166,216
2008	703	7,277	142 645
2000	703	8 973	156 838
2010	951		189 703
2010	995	11,754	202 750
2017	939	11,734	191 928
2012	931	11,177	193 258
2013	937	11,113	195 497
2015	971	11,377	204 261
2015	875	10.847	186 504
2017	Q22	10,017	100,500
2017	710	0,012	102,374
2010 2019 (partial)	/ I 7 59.4	7,300	133,102
Total	30 794	וסד, <i>ו</i> רבד ררב	5 791 077
iotai	JU,/UT	JZZ,/ JZ	3,771,072

publication in the early days of the TRR journal. Another four researchers started their careers in the 1980s. Most of the other authors started publishing papers in TRR after 1990. It is important to note that the numbers produced in this article are based on TRID data only.

Co-authorship networks can be used to investigate the structure of scientific collaborations. As transportation

Figure 2. Heatmap of prolific *Transportation Research Record* (TRR) authors (https://rpubs.com/subasish/507543).

research has become increasingly cross-disciplinary, it is important to investigate the patterns and trends of the authors. The current study is limited to developing a coauthor network plot for a quick understanding of the complex interdisciplinary networks between the authors. Future studies can explore the development of advanced analysis like author-topic model development. The network plot, shown in Figure 3, shows the network patterns of the authors that have at least one TRR article as author or co-author. The complexity of this network indicates the massive number of nodes and links between the authors. The research team used Gephi 0.9.2 to create network plots to explore the network of co-authors. First, the research team used the R software to create a GDF file, with link-in and link-out counts as an attribute. The GDF file was then imported to Gephi. The research team then prepared a network visualization using the ForceAtlas algorithm, which will group the nodes with similar connection. The node sizes are proportional to link-in counts and colored by different nodes. Imad Al-Qadi and Darcy Bullock are the two authors with the highest number of co-author connections (127 and 123, respectively). The research team also created an interactive web tool that allows the users to explore the co-authorship network interactively (53).

Figure 3. Coauthorship network (http://subasish.github.io/pages/gephi_html/TRR_C/network/).

Figure 4. Distribution of keywords by year (multiple correspondence analysis plot).

Multiple Correspondence Analysis of Top Keywords

Multiple correspondence analysis (MCA) can be considered as an unsupervised modeling technique (i.e., with no pre-defined response variable). This approach entails the construction of a matrix established on pairwise crosstabulation of each variable (54). By considering P as the number of attributes (in this case, "keywords" in a corpus) and I as the number of transactions (e.g., corpus). It will produce a matrix of $I \times P$. If L_p is the number of attributes for variable p, then the total number of attributes for all variables can be defined as $L = \sum_{p=1}^{p} L_p$. In the new matrix $I \times L$, each of the keywords will contain several columns to show all possible values. The cluster or group of attributes is considered as a weighted combination of J points. Here, attribute *j* is signified by a point denoted by C^{j} with weightage of n_{i} . For each variable, the sum of the weights of attribute points is n. For the whole set J, the sum can be represented by nP. The relative weight w_i for point C^i can be denoted as $w_i = n_i/(nP) = f_i/P$. To gain an overall idea of different variants of CA and their applicability, interested readers can consult the authors' previous studies (55-62).

To define different clusters (generated from the location of individual data points or individual attributes), MCA produces several parameters. Because of the overlapping in coordinates with the use of a large set of attributes, biplot is sometimes limited in visualization capacity. The \cos^2 (square cosine of the parameter) indicates a quality measure to provide degree of association between attributes and an axis. If the attribute is well represented by both dimensions for a two-dimensional space, the sum of the \cos^2 will be approximately one. Attributes with large \cos^2 values contribute the most to a particular axis or dimension. The publication years are grouped into four categories (by decade) for easy interpretation. The location of the years indicates a clockwise rotation (Figure 4). Four different clusters of keywords have been developed based on their coordinates (cluster 1: upper right, cluster 2: upper left, cluster 3: lower left, cluster 4: lower right).

Figure 5. Variations of words used from 1974 to 2019.

Figure 6. Top 20 topics.

Table 2 lists the parameters developed by the top 60 keywords. Figure 5 shows the percentage increase of the keywords in the four-decade groups. Word size indicates the percentage over the decade groups, and color represents the decade groups. The higher percentages of some of the terms indicate that exponential growth occurred during these time periods. For example, the keywords "social network" shows around a 1,000% increase during 2010–2019 compared with 2001–2009.

Topic Modeling Results and Discussions

Structural Topic Model

The research team performed the analysis by using open source R package "stm," (44) and topic model, "tm" (63). The data processing work will generate documents, vocabulary, and metadata that STM incorporates into the topic modeling context.

Metadata, associated with a topic, covariates for topical prevalence that allow metadata to determine the topic counts. The current model is converged after 46 iterations (maximum threshold: 150). Figure 6 illustrates the corpus

Table 2. Multiple Correspondence Analysis Measures for the Top 60 Keywords

Keyword Rank Dim I Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Cluster Evaluation 57 0.4837 0.4117 2.3821 7.8198 0.0539 1974-1990 (Cluster 1) Costs 16 0.3676 0.1279 0.7464 1.5513 0.0339 1974-1990 (Cluster 1) Transportation planning 0.1905 0.1279 0.74764 1.5513 0.0203 1974-1990 (Cluster 1) Measures of effectiveness 59 0.6672 0.1272 7.2738 0.7090 0.9712 0.0202 1974-1990 (Cluster 1) Forecasting 4 0.5395 0.7112 0.5123 0.04054 0.974-1990 (Cluster 1) Data collection 3 0.2730 0.0596 0.7812 0.5123 0.04054 0.0181 1974-1990 (Cluster 1) Data collection 3 0.2155 0.0224 1.6486 0.1141 0.9817 0.0007 1974-1990 (Cluster 1) Data collection 3 0.2155 0.0229 0.0353 0.0124 0			Coord	Coordinates		Contributions		os ²	
Evaluation 57 0.4877 0.4117 2.3821 7.8198 0.6339 1974-1990 (Cluster 1) Corts 16 0.3676 0.1278 2.5511 2.6123 0.7517 0.1037 1974-1990 (Cluster 1) Tamsportation planning 9 0.1905 0.1272 7.2738 0.0209 0.9712 0.0209 1974-1990 (Cluster 1) Maxmers of effectiveness 59 0.6672 0.1272 7.2738 0.0209 0.9712 0.0209 1974-1990 (Cluster 1) Forecasting 4 0.5395 0.0113 7.4870 1.4431 0.9581 0.04054 1974-1990 (Cluster 1) Level of service 43 0.0730 0.0298 1.3646 0.1141 0.9914 1974-1990 (Cluster 1) Data collection 3 0.2195 0.0150 3.0654 0.0222 0.0037 1974-1990 (Cluster 1) Deta collection 3 0.2295 0.0158 3.00124 0.966 0.0181 1974-1990 (Cluster 1) Level of service 40 0.2560 0.1848 1.1240	Keyword	Rank	Dim I	Dim 2	Dim I	Dim 2	Dim I	Dim 2	Cluster
Pavements II 0.6888 0.1474 2.5511 2.6123 0.7571 0.7700 1974-1990 (Cluster I) Transportation planning 9 0.1905 0.1727 0.7546 1.5613 0.2301 0.1037 1974-1990 (Cluster I) Speed 54 0.1401 0.1032 0.2464 0.6822 0.5503 0.4054 1974-1990 (Cluster I) Developmentatical models 1 0.1543 0.0598 0.0579 0.7812 0.5132 0.0922 1974-1990 (Cluster I) Data offectiveness 40 0.0738 0.0558 0.0781 0.0327 1974-1990 (Cluster I) Atternatives analysis 12 0.6357 0.0150 8.0465 0.0202 0.8881 0.0037 1974-1990 (Cluster I) Atternatives analysis 12 0.6357 0.0170 8.2642 0.1644 0.322 0.0765 1974-1990 (Cluster I) Design 0.3766 0.1748 0.2452 0.6634 0.3144 0.0202 <td>Evaluation</td> <td>57</td> <td>0.4837</td> <td>0.4117</td> <td>2.3821</td> <td>7.8198</td> <td>0.5538</td> <td>0.4013</td> <td>1974–1990 (Cluster 1)</td>	Evaluation	57	0.4837	0.4117	2.3821	7.8198	0.5538	0.4013	1974–1990 (Cluster 1)
Cores 16 0.3476 0.1748 2.5501 2.6123 0.7517 0.1709 (1974-1990 (Cluster) Measures of effectiveness 59 0.8672 0.1272 7.2738 0.7090 0.9712 0.0201 1974-1990 (Cluster) Forecasting 4 0.5395 0.1113 7.4870 1.4431 0.9581 0.0495 1974-1990 (Cluster) Instructured 1 0.1543 0.0598 0.0592 0.1792 0.0198 1974-1990 (Cluster) Level of service 43 0.0730 0.0598 0.0522 0.0191 1974-1990 (Cluster) Cost effectiveness 40 0.2138 0.0172 0.8645 0.0202 0.8881 0.0005 1974-1990 (Cluster) Atternatives analysis 12 0.6357 0.0114 0.9412 0.0025 1974-1990 (Cluster) Detison 1.9464 0.1448 1.240 0.528 0.0164 0.1735 0.572 1974-1990 (Cluster) Detison 1.944 0.1248 3.4993 0.0184 0.17	Pavements	11	0.6888	0.1840	9.5413	3.0833	0.8963	0.0639	1974–1990 (Cluster I)
Transportation planning 9 0.1905 0.1272 0.72738 0.7090 0.712 0.2009 1974-1990 (Cluster) Speed 54 0.1401 0.1203 0.2046 0.6228 0.5503 0.0408 1974-1990 (Cluster) Speed 0.5395 0.1113 7.4870 1.4411 0.9518 0.0408 1974-1990 (Cluster) Mathematical models 1 0.1543 0.0558 0.0552 0.1792 0.1546 0.1319 1974-1990 (Cluster) Ocst effectiveness 0 0.2738 0.0150 8.0645 0.0222 0.0881 0.0007 1974-1990 (Cluster) Aternatives analysis 12 0.6357 0.150 8.0645 0.0222 0.0881 0.0007 1974-1990 (Cluster) Methodology 38 -0.2956 0.3666 1.0367 7.4241 0.3626 0.3721 1.9149 0.0108 1.9149 0.0108 1.9149 0.0108 1.914 1.914 1.914 1.914 1.914 1.914 1.914 1.914 1	Costs	16	0.3676	0.1748	2.5501	2.6123	0.7517	0.1700	1974–1990 (Cluster I)
Measures of effectiveness 59 0.8672 0.1272 7.2738 0.7090 0.9712 0.0201 0.9712 0.1991 0.9712 0.1991 0.9712 0.1991 0.9712 0.1513 0.4481 0.9541 0.9712 0.5121 0.9712 0.5121 0.9712 0.5121 0.9712 0.5121 0.9712	Transportation planning	9	0.1905	0.1279	0.7646	1.5613	0.2301	0.1037	1974–1990 (Cluster I)
Speed 54 0.1401 0.1203 0.2046 0.6529 0.5503 0.0408 1974-1990 (Cluster 1) Mathematical models I 0.1543 0.0654 0.7590 0.1966 0.1312 0.9712 0.1312 0.9721 0.1312 0.9749 0.1966 0.1319 1974-1990 (Cluster 1) Data collection 3 0.2175 0.0758 0.0552 0.0712 0.0544 0.9312 0.0313 0.9314 0.9910 (Cluster 1) Aternatives analysis 12 0.6337 0.0150 8.0645 0.0212 0.9881 0.0007 1974-1990 (Cluster 1) Aternatives analysis 12 0.6337 0.0150 8.0645 0.0222 8.0881 0.0005 1974-1090 (Cluster 1) Methodology 38 -0.2955 0.3766 1.3367 7.4241 0.3426 0.3749 0.0101 0.3118 0.3124 1991-2000 (Cluster 2) Drivers 2 -0.2890 0.1732 0.1484 0.4348 0.4348 0.3919 1991-2000 (Cluster 2) <tr< td=""><td>Measures of effectiveness</td><td>59</td><td>0.8672</td><td>0.1272</td><td>7.2738</td><td>0.7090</td><td>0.9712</td><td>0.0209</td><td>1974–1990 (Cluster I)</td></tr<>	Measures of effectiveness	59	0.8672	0.1272	7.2738	0.7090	0.9712	0.0209	1974–1990 (Cluster I)
Foreassing 4 0.5395 0.1113 7.4870 1.4431 0.5581 0.0454 0.0599 0.759 0.7512 0.5132 0.0712 0.512 0.9712 0.9712 0.9712 0.9712 0.9712 0.9712 0.9712 0.9719 0.1141 0.9719 0.0181 1974-1990 (Luster 1) Data collections 3 0.2175 0.0150 8.645 0.0022 0.8810 0.0005 1974-1990 (Luster 1) Lemandros analysis 2 0.5074 0.0135 3.9033 0.0124 0.9967 0.0005 1974-1990 (Luster 1) Methodology 38 0.0295 0.3766 1.0367 7.441 0.3626 0.9100 (Luster 2) Optimization 21 -0.2560 0.1848 1.1240 2.6328 0.6304 0.3148 1.91-2000 (Luster 2) Public transit 6 -0.1044 0.748 0.3458 2.2272 0.2393 0.4184 0.548 0.2995 1991-2000 (Luster 2) <t< td=""><td>Speed</td><td>54</td><td>0.1401</td><td>0.1203</td><td>0.2046</td><td>0.6828</td><td>0.5503</td><td>0.4054</td><td>1974–1990 (Cluster I)</td></t<>	Speed	54	0.1401	0.1203	0.2046	0.6828	0.5503	0.4054	1974–1990 (Cluster I)
Mathematical models I 0.1543 0.0554 0.7812 0.0719 0.1946 0.1319 0.1974-1990 (Cluster I) Data collection 3 0.2195 0.0298 1.344 0.1141 0.9819 0.0181 1974-1990 (Cluster I) Aternatives analysis 12 0.6357 0.0150 8.0645 0.0220 0.8881 0.0007 1974-1990 (Cluster I) Aternatives analysis 12 0.6357 0.0150 8.0645 0.0214 0.9897 0.0007 1974-1990 (Cluster I) Methodology 38 -0.2995 0.3766 1.0367 7.4241 0.3626 0.5732 1971-2000 (Cluster 2) Optimization 15 -0.2495 0.1732 1.5498 2.0490 0.0178 1.991-2000 (Cluster 2) Drivers 24 -0.1443 0.1732 1.5499 2.0452 0.3295 1.917-2000 (Cluster 2) Tardit volume 41 -0.0279 0.1519 0.5151 9191-2000 (Cluster 2) </td <td>Forecasting</td> <td>4</td> <td>0.5395</td> <td>0.1113</td> <td>7.4870</td> <td>1.4431</td> <td>0.9581</td> <td>0.0408</td> <td>1974–1990 (Cluster I)</td>	Forecasting	4	0.5395	0.1113	7.4870	1.4431	0.9581	0.0408	1974–1990 (Cluster I)
Level of service 43 0.0730 0.0598 0.0592 0.1799 0.1966 0.1319 1974–1990 (Cluster I) Cast acilection 3 0.2198 0.0172 0.8562 0.0141 0.9819 0.0181 1974–1990 (Cluster I) Cast affectiveness 40 0.2738 0.0172 0.8564 0.0120 0.881 0.0005 1974–1990 (Cluster I) Design 29 0.5054 0.0135 3.9053 0.0124 0.9967 0.0005 1974–1990 (Cluster 2) Optimization 1 -0.2560 0.1848 7.8393 2.9586 0.9180 0.0175 1991–2000 (Cluster 2) Optimization 1 -0.2660 0.1732 1.5699 2.4499 0.518 1991–2000 (Cluster 2) Drivers 24 -0.1443 0.1732 1.5699 2.4499 0.5786 1991–2000 (Cluster 2) Travel demand 19 -0.2036 0.1732 1.5199 2.3472 0.5785 1991–2000	Mathematical models	1	0.1543	0.0654	0.9596	0.7812	0.5132	0.0922	1974–1990 (Cluster 1)
Data collection 3 0.2195 0.0298 1344 0.1141 0.9819 0.0181 1974–1990 (Cluster I) Atternatives analysis 12 0.6357 0.0150 8.0645 0.0220 0.8881 0.0007 1974–1990 (Cluster I) Atternatives analysis 12 0.6357 0.0150 8.0645 0.0220 0.8881 0.0007 1974–1990 (Cluster 1) Methodology 38 -0.2995 0.3766 1.0367 7.4241 0.3626 0.5732 1991–2000 (Cluster 2) Public transit 6 -0.1094 0.1748 0.2395 0.586 0.1918 0.5151 191–2000 (Cluster 2) Public transit 6 -0.1094 0.1748 0.2346 3.2472 0.2091 191–2000 (Cluster 2) Travid demand 19 -0.2363 0.1732 1.490 0.4610 1.1501 0.1391 0.5781 191–2000 (Cluster 2) Trafic volume 41 -0.0320 0.4438 0.4548 <	Level of service	43	0.0730	0.0598	0.0592	0.1799	0.1966	0.1319	1974–1990 (Cluster 1)
Cost effectiveness 40 0.2738 0.0172 0.8522 0.0154 0.9322 0.0075 1974-1990 (Cluster I) Design 29 0.5074 0.0135 3.9053 0.0124 0.9967 0.0005 1974-1990 (Cluster 1) Detinization 21 -0.2560 0.1848 1.1240 2.528 0.6014 0.3144 1991-2000 (Cluster 2) Highway safety 15 -0.2660 0.1748 0.2946 0.9160 0.0755 1991-2000 (Cluster 2) Drivers 24 -0.1448 0.1748 0.2946 0.2190 0.5150 1991-2000 (Cluster 2) Travel demand 19 -0.2696 0.1732 1.1492 0.7624 0.293 1911-2000 (Cluster 2) Travel demand 19 -0.2696 0.1730 0.131 0.5718 0.9712 1911-2000 (Cluster 2) Travel demand 19 -0.2697 0.1480 2.4630 1.4348 0.5748 0.9717 1911-2000 (Cluster 2)<	Data collection	3	0.2195	0.0298	1.3648	0.1141	0.9819	0.0181	1974–1990 (Cluster 1)
Alternatives analysis 12 0.4357 0.0150 8.0445 0.022 0.8881 0.0005 1974-1990 (Cluster 1) Methodology 38 -0.2995 0.3766 1.0367 7.4241 0.3626 0.03732 1991-2000 (Cluster 2) Optimization 21 -0.2560 0.1848 1.1240 2.4528 0.6034 0.3141 1991-2000 (Cluster 2) Public transit 6 -0.1094 0.1748 0.2946 3.4049 0.2018 0.5150 1991-2000 (Cluster 2) Drivers 24 -0.1443 0.1732 1.5809 2.4489 0.6988 0.3705 1991-2000 (Cluster 2) Travel demand 19 -0.2633 0.1732 1.5809 2.4489 0.6988 0.10991 2.000 (Cluster 2) Trafic volume 41 -0.0732 0.1494 0.0610 1.1510 0.5117 1991-2000 (Cluster 2) Drash rates 60 -0.1033 0.1228 0.1785 1.3347 0.3707 <td>Cost effectiveness</td> <td>40</td> <td>0.2738</td> <td>0.0172</td> <td>0.8562</td> <td>0.0154</td> <td>0.9322</td> <td>0.0037</td> <td>1974–1990 (Cluster 1)</td>	Cost effectiveness	40	0.2738	0.0172	0.8562	0.0154	0.9322	0.0037	1974–1990 (Cluster 1)
Design 29 0.5094 0.0135 3.9053 0.0124 0.9967 0.0007 1971-1990 [Cluster 2] Methodology 38 -0.2950 0.3766 1.0367 7.4241 0.3626 0.5732 1991-2000 [Cluster 2] Highway safety 15 -0.6401 0.1848 1.240 2.6528 0.6034 0.3143 1991-2000 [Cluster 2] Drivers 24 -0.1443 0.1738 0.3458 2.2752 0.3293 1991-2000 [Cluster 2] Travel demand 19 -0.2699 0.1519 0.231 1.1492 0.7624 0.0783 1991-2000 [Cluster 2] Behavior 31 -0.4127 0.1480 2.4430 0.8548 0.239 1991-2000 [Cluster 2] Crash rates 60 -0.1036 0.1249 0.1035 0.6813 0.4071 1991-2000 [Cluster 2] Asphat pavements 58 -0.1616 0.0899 0.5288 0.3774 0.0818 1991-2000 [Cluster 2]	Alternatives analysis	12	0.6357	0.0150	8.0645	0.0202	0.8881	0.0005	1974–1990 (Cluster 1)
Methodology 38 -0.2995 0.3766 1.0357 7.4241 0.3626 0.5732 1991-2000 Cluster 2) Optimization 21 -0.2560 0.1848 7.1392 2.9566 0.0314 1991-2000 Cluster 2) Public transit 6 -0.1094 0.1748 0.2946 3.4049 0.2018 0.9114 1991-2000 (Cluster 2) Drivers 24 -0.1441 0.1732 1.5809 2.4489 0.6988 0.150 1991-2000 (Cluster 2) Travel demand 19 -0.2663 0.1732 1.5809 2.4489 0.6988 0.1391 0.6724 0.2390 1991-2000 (Cluster 2) Trafic volume 41 -0.0732 0.1494 0.0610 1.1391 0.5765 1991-2000 (Cluster 2) Asphalt pavements 31 -0.133 0.1328 0.1785 1.3347 0.3701 0.517 1991-2000 (Cluster 2) Asphalt pavements 5 -0.2168 0.0258 0.2373 0.6413 <td>Design</td> <td>29</td> <td>0 5094</td> <td>0.0135</td> <td>3 9053</td> <td>0.0124</td> <td>0 9967</td> <td>0.0007</td> <td>1974–1990 (Cluster 1)</td>	Design	29	0 5094	0.0135	3 9053	0.0124	0 9967	0.0007	1974–1990 (Cluster 1)
Oppminzator Difference Difference <thdifferenc< th=""> Differenc Differenc</thdifferenc<>	Methodology	38	-0 2995	0.3766	1 0367	7 4241	0.3626	0 5732	1991–2000 (Cluster 2)
Optimization 15 -0.2401 0.1442 7.1403 2.9562 0.9160 0.0761 169 12000 (Cluster 2) Public transit 6 -0.1094 0.1748 0.2946 3.0499 0.2018 0.9160 0.0163 199 -0.2000 (Cluster 2) Travel demand 19 -0.2963 0.1732 1.1492 0.2449 0.0290 199 -0.2000 (Cluster 2) Mode choice 47 -0.2999 0.1519 0.2201 1.1492 0.07624 0.2090 199 -0.2000 (Cluster 2) Behavior 31 -0.4127 0.1484 0.6103 0.4071 0.5785 199 -0.2000 (Cluster 2) Crash rates 60 -0.0136 0.1249 0.1035 0.4341 0.3788 0.4071 0.5785 199 -2000 (Cluster 2) Asphati pavements 35 -0.2368 0.0829 0.6320 0.3788 0.4341 0.1588 199 -2000 (Cluster 2) Junice States 3 -0.4166 0.0305 1.779 0	Optimization	21	-0.2560	0 1848	1.0307	2 6528	0.6034	03144	1991–2000 (Cluster 2)
Ingury and y Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	Highway safety	15	_0.6401	0 1848	7 8393	2.0520	0.9180	0.0765	1991–2000 (Cluster 2)
John Carling Co. 1743 Co. 1748 Co. 1749	Public transit	6	_0 1094	0 1748	0 2946	3 4049	0.2018	0.5150	1991_2000 (Cluster 2)
Drivers 2-7 -C-1735 0.7130 0.2122 0.2123 0.7130 1271-200 Cluster 2) Mode choice 47 -0.2899 0.1519 0.9231 1.1492 0.7624 0.2095 1991-2000 (Cluster 2) Trafic volume 41 -0.0732 0.1494 0.0610 1.1510 0.1391 0.5785 1991-2000 (Cluster 2) Drban reas 23 -0.1036 0.1288 0.1785 1.3347 0.3707 0.6117 1991-2000 (Cluster 2) Crash rates 60 -0.1036 0.1249 0.6820 0.3788 0.6774 0.0381 1991-2000 (Cluster 2) Environmental impacts 58 -0.1616 0.0809 0.2588 0.2935 0.6343 0.1587 1991-2000 (Cluster 2) Pavement performance 8 -0.0666 0.0407 0.122 0.050 0.8999 0.0001 1991-2000 (Cluster 2) Simulation 7 -0.0188 -0.0372 2.0272 0.0001 991-200	Drivers	0 ⊃4	0 1 4 4 3	0.1739	0.2740	2 2752	0.2010	0.4793	1991_{2000} (Cluster 2)
Index 17 -0.289 0.1519 0.231 1.4132 0.57624 0.2395 191-2000 (Cluster 2) Traffic volume 41 -0.0732 0.1494 0.0610 1.1501 0.1391 0.5783 1991-2000 (Cluster 2) Dehavior 31 -0.4127 0.1490 2.4630 1.4344 0.05781 1991-2000 (Cluster 2) Crash rates 60 -0.1036 0.1249 0.1035 0.6813 0.4071 0.5917 1991-2000 (Cluster 2) Asphalt pavements 55 -0.2166 0.0809 0.2588 0.2935 0.6343 0.1588 1991-2000 (Cluster 2) Pavement performance 8 -0.0406 0.0102 0.1631 0.4506 0.1587 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0325 2.6252 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Traffic forw 20 -0.3425 -0.00077 0.0272 0.0047 0.9351	Travel domand	19	0.2963	0.1730	1 5909	2.2732	0.3273	0.7705	1991_{2000} (Cluster 2)
Indue (holice) 17 -0.2477 0.1179 0.2211 1.1472 0.7497 0.2493 1271-2000 (Cluster 2) Behavior 31 -0.4127 0.1494 0.0610 1.1510 0.1391 0.3788 1971-2000 (Cluster 2) Crash rates 60 -0.1036 0.1288 0.1785 1.3347 0.3707 0.6117 1991-2000 (Cluster 2) Asphalt pavements 35 -0.2368 0.0829 0.6813 0.4671 0.5581 1991-2000 (Cluster 2) Invironmental impacts 58 -0.1616 0.0809 0.2588 0.2935 0.6343 0.1588 1991-2000 (Cluster 2) Pavement performance 8 -0.4066 0.0007 1.0217 0.8472 0.0128 1.91-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0032 1.2222 0.0005 0.9899 0.0001 1991-2000 (Cluster 3) Tradic flow 20 -0.3425 -0.0077 2.0272 0.0047 0.93	Mada chaica	17	0.2703	0.1732	1.5007	2.1407	0.0700	0.2370	1991 2000 (Cluster 2)
Inflit COUNT COUNT <t< td=""><td></td><td>41</td><td>-0.2077</td><td>0.1317</td><td>0.7231</td><td>1.1472</td><td>0.7624</td><td>0.2075</td><td>1991–2000 (Cluster 2)</td></t<>		41	-0.2077	0.1317	0.7231	1.1472	0.7624	0.2075	1991–2000 (Cluster 2)
Definition 31 -0.41,27 0.1480 2.4430 1.4346 0.3436 0.1037 1.971-2000 (Cluster 2) Crash rates 60 -0.1033 0.1249 0.1035 0.6813 0.4071 0.5917 1.991-2000 (Cluster 2) Asphalt pavements 35 -0.2368 0.0829 0.6820 0.3788 0.6747 0.0831 1.991-2000 (Cluster 2) Pavement performance 51 -0.4106 0.0505 1.7794 0.1217 0.8472 0.0128 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0032 1.2522 0.0006 0.9846 0.0001 1991-2000 (Cluster 2) Tradic flow 20 -0.3425 -0.0077 2.0272 0.0047 0.9846 0.0051 2.001-2010 (Cluster 3) Tradie bahavior 22 -0.0384 -4.3608 0.1010 0.9949 0.051 2.001-2010 (Cluster 3) Tradie sinulation 7 -0.0188 -0.0324 -0.0526 <	Tranic volume	-++1 ->1	-0.0732	0.1494	0.0610	1.1301	0.1371	0.5765	1991–2000 (Cluster 2)
Orban areas 23 -0.1033 0.1249 0.1035 0.6813 0.4071 0.5917 1991-2000 (Cluster 2) Asphalt pavements 35 -0.2368 0.0829 0.6820 0.3788 0.6774 0.0831 1991-2000 (Cluster 2) Linted States 51 -0.4106 0.0809 0.2588 0.2935 0.6313 0.4701 0.991-2000 (Cluster 2) Pavement performance 8 -0.0479 0.035 2.652 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.032 1.9222 0.0005 0.9849 0.0001 1991-2000 (Cluster 2) Signalized intersections 32 -0.4077 0.0327 2.00077 0.9311 0.1810 0.4715 2001-2010 (Cluster 3) Simulation 7 -0.0188 -0.0370 0.0072 0.9531 0.0219 0.0210 2001-2010 (Cluster 3) Traffic sfery 39 -0.2472 -0.0375 <td< td=""><td>benavior</td><td>21</td><td>-0.4127</td><td>0.1460</td><td>2.4630</td><td>1.4340</td><td>0.0340</td><td>0.1099</td><td>1991–2000 (Cluster 2)</td></td<>	benavior	21	-0.4127	0.1460	2.4630	1.4340	0.0340	0.1099	1991–2000 (Cluster 2)
Crash rates 60 -0.1036 0.1249 0.1033 0.6813 0.4071 0.5917 1791-2000 (Cluster 2) Environmental impacts 58 -0.1616 0.0829 0.6820 0.3788 0.6374 0.0831 191-2000 (Cluster 2) Pavement performance 8 -0.0686 0.0407 0.1022 0.1631 0.4506 0.1587 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0032 2.2652 0.0005 0.9846 0.0001 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0032 2.2652 0.0005 0.9899 0.0001 1991-2000 (Cluster 2) Signalized intersections 36 -0.4024 0.0032 1.2222 0.0045 0.0805 2001-2010 (Cluster 3) Simulation 7 -0.0188 -0.0375 0.7001 0.0729 0.9511 0.0219 2001-2010 (Cluster 3) Trawel behavior 22 -0.5067 -0.0364 4.3608 0.1047 0.2346 2001-2010 (Cluster 3)	Orban areas	23	-0.1033	0.1328	0.1785	1.3347	0.3707	0.6117	1991–2000 (Cluster 2)
Aspnait pavements 35 -0.2368 0.0827 0.6820 0.3788 0.67/4 0.0831 1791-2000 (Cluster 2) United States 51 -0.4106 0.0809 0.2588 0.2395 0.6343 0.1588 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0035 2.2652 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Asphalt mixtures 36 -0.4024 0.0032 1.9222 0.0047 0.9381 0.0001 1991-2000 (Cluster 2) Traffic forw 20 -0.3425 -0.0077 2.0272 0.0047 0.9381 0.0051 2001-2010 (Cluster 3) Traffic forw 22 -0.5087 -0.0374 4.3608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Traffic forwing 39 -0.2472 -0.0375 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Traffic formulation 37 -0.2344 -0.0560 3.7134 0.4472 0.9691 0.0147 2001-2010 (Cluster 3)	Crash rates	60 25	-0.1036	0.1249	0.1035	0.6813	0.4071	0.5917	1991–2000 (Cluster 2)
Environmental impacts 58 -0.1161 0.0809 0.2381 0.2933 0.01583 1991-2000 (Cluster 2) Pavement performance 8 -0.0686 0.4007 0.1022 0.1611 0.4506 0.1587 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0035 2.2652 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Asphalt mixtures 36 -0.4024 0.0032 2.2652 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Simulation 7 -0.0188 -0.0303 0.0079 0.9931 0.1810 0.4715 2001-2010 (Cluster 3) Travel behavior 22 -0.5087 -0.0364 4.3608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0464 4.3503 0.325 0.5601 0.0147 2001-2010 (Cluster 3) Traffic simulation 37 -0.2344 -0.0526 3.7134 <td>Asphalt pavements</td> <td>35</td> <td>-0.2368</td> <td>0.0829</td> <td>0.6820</td> <td>0.3788</td> <td>0.6774</td> <td>0.0831</td> <td>1991–2000 (Cluster 2)</td>	Asphalt pavements	35	-0.2368	0.0829	0.6820	0.3788	0.6774	0.0831	1991–2000 (Cluster 2)
Onited States 51 -0.4106 0.0505 1.7/94 0.1217 0.8472 0.0128 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0035 2.2652 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Asphalt mixtures 36 -0.4024 0.0032 1.9222 0.0005 0.9899 0.0001 1991-2000 (Cluster 3) Traffic flow 20 -0.3425 -0.0077 2.0272 0.0047 0.9351 0.0005 2001-2010 (Cluster 3) Travel behavior 22 -0.5087 -0.0344 4.3608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Traffic safety 39 -0.0273 -0.0460 0.6672 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Travel ime 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Travel ime 5 -0.4370 -0.0540 4.7353	Environmental impacts	58	-0.1616	0.0809	0.2588	0.2935	0.6343	0.1588	1991–2000 (Cluster 2)
Pavement performance 8 -0.0886 0.0407 0.1022 0.131 0.4306 0.1387 1991-2000 (Cluster 2) Signalized intersections 32 -0.4079 0.0032 1.9222 0.0008 0.9846 0.0001 1991-2000 (Cluster 2) Asphalt mixtures 36 -0.4024 0.0032 1.9222 0.0005 0.9846 0.0005 2001-2010 (Cluster 3) Simulation 7 -0.0184 -0.0344 3.608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Traffic safety 39 -0.2472 -0.0375 0.7001 0.0729 0.9531 0.0219 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0460 0.6772 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.3274 0.4730 0.3361 0.8652 0.1012 0.01210 (Cluster 3) Traffic simulation 37 -0.2344 -0.0760	United States	51	-0.4106	0.0505	1.//94	0.1217	0.8472	0.0128	1991–2000 (Cluster 2)
Signalized intersections 32 -0.40/9 0.0035 2.2652 0.0008 0.9849 0.0001 1991-2000 (Cluster 2) Traffic flow 20 -0.3425 -0.0077 2.0272 0.0047 0.9899 0.0005 2.09899 0.0005 2.001-2010 (Cluster 3) Simulation 7 -0.0188 -0.0303 0.0079 0.9931 0.1810 0.4715 2001-2010 (Cluster 3) Travel behavior 22 -0.5087 -0.0375 0.7001 0.0729 0.9531 0.0219 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0460 0.0672 0.1049 0.4426 0.08960 0.0236 2001-2010 (Cluster 3) Travel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Trefeways 25 -0.0688 -0.1112 0.0760 0.9010 0.5041 2001-2010 (Cluster 3) Pavement design 45 -0.0480 </td <td>Pavement performance</td> <td>8</td> <td>-0.0686</td> <td>0.0407</td> <td>0.1022</td> <td>0.1631</td> <td>0.4506</td> <td>0.1587</td> <td>1991–2000 (Cluster 2)</td>	Pavement performance	8	-0.0686	0.0407	0.1022	0.1631	0.4506	0.1587	1991–2000 (Cluster 2)
Asphalt mixtures 36 -0.4024 0.0012 1.9222 0.0005 0.9899 0.0001 1.991-2000 Cluster 1 Traffic flow 20 -0.3425 -0.0077 2.0272 0.0047 0.9351 0.0005 2.001-2010 (Cluster 3) Traffic flow 22 -0.5087 -0.0364 4.3608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Traffic flow 39 -0.2472 -0.0375 0.7001 0.0729 0.9531 0.0219 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0460 0.6672 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Tarkel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0417 2001-2010 (Cluster 3) Traffic ismulation 37 -0.2344 -0.0540 4.7353 0.3275 0.9601 0.2401 0.6279 2001-2010 (Cluster 3) Pavement design 45 -0.0468 -0.1130 <td>Signalized intersections</td> <td>32</td> <td>-0.4079</td> <td>0.0035</td> <td>2.2652</td> <td>0.0008</td> <td>0.9846</td> <td>0.0001</td> <td>1991–2000 (Cluster 2)</td>	Signalized intersections	32	-0.4079	0.0035	2.2652	0.0008	0.9846	0.0001	1991–2000 (Cluster 2)
Irantic flow 20 -0.342s -0.007/ 2.0272 0.004/ 0.9331 0.000s 2001-2010 (Cluster 3) Travel behavior 22 -0.5087 -0.0364 4.3608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Travel behavior 22 -0.5087 -0.0375 0.7001 0.0729 0.9531 0.0219 2001-2010 (Cluster 3) Gase studies 2 -0.3244 -0.0526 3.7134 0.4426 0.8960 0.0236 2001-2010 (Cluster 3) Tradic simulation 37 -0.2444 -0.0526 3.7134 0.4426 0.8960 0.0236 2001-2010 (Cluster 3) Tradic simulation 37 -0.2344 -0.0799 0.6393 0.3361 0.6279 2001-2010 (Cluster 3) Preeways 25 -0.0688 -0.112 0.0760 0.9010 0.2401 0.6279 2001-2010 (Cluster 3) Decision making 18 -0.0272 -0.1179 0.0155 1.1482 0.0480 2001-2010 (Cluster 3) Laboratory tests	Asphalt mixtures	36	-0.4024	0.0032	1.9222	0.0005	0.9899	0.0001	1991–2000 (Cluster 2)
Simulation 7 -0.0188 -0.0303 0.0079 0.031 0.1810 0.4715 2001-2010 (Cluster 3) Trayel behavior 22 -0.5087 -0.0375 0.7001 0.0729 0.9531 0.0219 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0460 0.0672 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Case studies 2 -0.3244 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Travel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Freeways 25 -0.0688 -0.1112 0.0760 0.9010 0.2401 0.6279 2001-2010 (Cluster 3) Pavement design 45 -0.0480 -0.1130 0.0255 0.6389 0.910 0.5041 2001-2010 (Cluster 3) Jebratory tests 13 -0.1730 0.2849 0.9087 <td< td=""><td>Iraffic flow</td><td>20</td><td>-0.3425</td><td>-0.0077</td><td>2.0272</td><td>0.0047</td><td>0.9351</td><td>0.0005</td><td>2001–2010 (Cluster 3)</td></td<>	Iraffic flow	20	-0.3425	-0.0077	2.0272	0.0047	0.9351	0.0005	2001–2010 (Cluster 3)
Iravel behavior 22 -0.05087 -0.0364 4.3608 0.1010 0.9949 0.0051 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0460 0.0672 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Case studies 2 -0.3244 -0.0526 3.7134 0.4426 0.8960 0.0236 2001-2010 (Cluster 3) Travel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Traffic simulation 37 -0.2344 -0.0799 0.6393 0.3361 0.8652 0.104 2001-2010 (Cluster 3) Pavement design 45 -0.0480 -0.1130 0.0255 0.6389 0.9010 0.5041 2001-2010 (Cluster 3) Pavement design 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Ighway capacity 44 -0.1603 -0.1345 0.2849 0.9087 0.5718 0.4026 2001-2010 (Cluster 3)	Simulation	/	-0.0188	-0.0303	0.0079	0.0931	0.1810	0.4/15	2001–2010 (Cluster 3)
Iraffic safety 39 -0.24/2 -0.0375 0.7001 0.0729 0.9531 0.0219 2001-2010 (Cluster 3) Regression analysis 49 -0.0783 -0.0460 0.0672 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Case studies 2 -0.3244 -0.0526 3.7134 0.4426 0.8960 0.0236 2001-2010 (Cluster 3) Travel time 5 -0.4370 -0.0540 4.7353 0.3216 0.8652 0.1004 2001-2010 (Cluster 3) Freeways 25 -0.0688 -0.1112 0.0760 0.9010 0.2401 0.6279 2001-2010 (Cluster 3) Pavement design 45 -0.0480 -0.1130 0.0255 0.6389 0.910 0.5041 2001-2010 (Cluster 3) Jecision making 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 .7845 2001-2010 (Cluster 3) Algorithms 17 -0.3012 -0.1403 1.7033 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Jabratory tests 13 -0.1970 -0.6332 3.4539 0.5577	Iravel behavior	22	-0.5087	-0.0364	4.3608	0.1010	0.9949	0.0051	2001–2010 (Cluster 3)
Regression analysis 49 -0.0783 -0.0460 0.0672 0.1049 0.6459 0.2228 2001-2010 (Cluster 3) Case studies 2 -0.3244 -0.0526 3.7134 0.4426 0.8960 0.0236 2001-2010 (Cluster 3) Trarkel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Traffic simulation 37 -0.2344 -0.0799 0.6393 0.3361 0.8652 0.1004 2001-2010 (Cluster 3) Pavement design 45 -0.0688 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Decision making 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Injehway capacity 44 -0.1603 -0.133 1.7034 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Injehway capacity 44 -0.1687 0.0668 1	Iraffic safety	39	-0.2472	-0.0375	0.7001	0.0729	0.9531	0.0219	2001–2010 (Cluster 3)
Case studies 2 -0.3244 -0.0526 3.7134 0.4426 0.8960 0.0236 2001-2010 (Cluster 3) Travel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Traffic simulation 37 -0.2344 -0.0799 0.6393 0.3361 0.8652 0.1004 2001-2010 (Cluster 3) Pavement design 45 -0.0480 -0.1130 0.0255 0.6389 0.9910 0.5041 2001-2010 (Cluster 3) Decision making 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Algorithms 17 -0.3012 -0.1403 1.7033 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Iaboratory tests 13 -0.1957 -0.1730 0.7334 2.5963 0.5577 0.4358 2001-2010 (Cluster 3) Iatiting 55 -0.2470 -0.2710 0.6332	Regression analysis	49	-0.0783	-0.0460	0.0672	0.1049	0.6459	0.2228	2001–2010 (Cluster 3)
Travel time 5 -0.4370 -0.0540 4.7353 0.3275 0.9601 0.0147 2001-2010 (Cluster 3) Traffic simulation 37 -0.2344 -0.0799 0.6393 0.3361 0.8652 0.1004 2001-2010 (Cluster 3) Preways 25 -0.0688 -0.1112 0.0760 0.9010 0.5041 2001-2010 (Cluster 3) Decision making 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Algorithms 17 -0.0102 -0.1403 1.7033 1.6734 0.8211 0.1787 2001-2010 (Cluster 3) Algorithms 17 -0.0120 -0.1403 1.7033 1.6734 0.5718 0.4026 2001-2010 (Cluster 3) Laboratory tests 13 -0.1957 -0.1730 0.7334 2.5963 0.5577 0.4358 2001-2010 (Cluster 3) Rutting 53 -0.2470 -0.2170 0.6332 3.4539 0.358	Case studies	2	-0.3244	-0.0526	3./134	0.4426	0.8960	0.0236	2001–2010 (Cluster 3)
Traffic simulation 37 -0.2344 -0.0799 0.6393 0.3361 0.8652 0.1004 2001-2010 (Cluster 3) Freeways 25 -0.0688 -0.1112 0.0760 0.9010 0.2401 0.6279 2001-2010 (Cluster 3) Pavement design 45 -0.0480 -0.1130 0.0255 0.6389 0.0910 0.5041 2001-2010 (Cluster 3) Decision making 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Algorithms 17 -0.3012 -0.1403 1.7033 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Jaboratory tests 13 -0.1957 -0.1730 0.7334 2.5963 0.5577 0.4358 2001-2010 (Cluster 3) Rutting 55 -0.2470 -0.2710 0.6332 3.4539 0.3582 0.4312 2001-2010 (Cluster 3) Statistical analysis 46 0.0816 -0.0090 0.0735 0.0041 0.7133 0.0087 2011-2019 (Cluster 4) Traffic speed 56 0.0847 -0.0184 0.0732 0	Travel time	5	-0.4370	-0.0540	4.7353	0.3275	0.9601	0.0147	2001–2010 (Cluster 3)
Freeways 25 -0.0688 -0.1112 0.0760 0.9010 0.2401 0.6279 2001-2010 (Cluster 3) Pavement design 45 -0.0480 -0.1130 0.0255 0.6389 0.0910 0.5041 2001-2010 (Cluster 3) Highway capacity 44 -0.1603 -0.1345 0.2849 0.9087 0.5718 0.4026 2001-2010 (Cluster 3) Algorithms 17 -0.3012 -0.1403 1.7033 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Laboratory tests 13 -0.1957 -0.1687 0.0668 1.4146 0.1687 0.7887 2001-2010 (Cluster 3) Rutting 55 -0.2470 -0.2710 0.6332 3.4539 0.3582 0.4312 2001-2010 (Cluster 3) Hot mix asphalt 53 -0.2995 -0.4117 0.9381 8.0284 0.3459 0.6535 2001-2019 (Cluster 4) Freed 56 0.0816 -0.0090 0.0735 0.0041 0.7133 0.0087 2011-2019 (Cluster 4) Statistical analysis 46 0.0816 -0.0134 0.4379 0.0088	Iraffic simulation	3/	-0.2344	-0.0799	0.6393	0.3361	0.8652	0.1004	2001–2010 (Cluster 3)
Pavement design45-0.0480-0.11300.02550.63890.09100.50412001-2010 (Cluster 3)Decision making18-0.0292-0.11790.01551.14820.04800.78452001-2010 (Cluster 3)Algorithms17-0.3012-0.14031.70331.67340.82110.17812001-2010 (Cluster 3)Algorithms17-0.3012-0.14031.70331.67340.82110.17872001-2010 (Cluster 3)Finite element method48-0.0780-0.16870.06681.41460.16870.78872001-2010 (Cluster 3)Laboratory tests13-0.1957-0.17300.73342.59630.55770.43582001-2010 (Cluster 3)Rutting55-0.2470-0.27100.63323.45390.35820.43122001-2010 (Cluster 3)Hot mix asphalt53-0.2995-0.41170.93818.02840.34590.65352001-2019 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Surveys300.2070-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Field tests300.2070-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Concrete pavements520.0457-0.19650	Freeways	25	-0.0688	-0.1112	0.0760	0.9010	0.2401	0.6279	2001–2010 (Cluster 3)
Decision making 18 -0.0292 -0.1179 0.0155 1.1482 0.0480 0.7845 2001-2010 (Cluster 3) Highway capacity 44 -0.1603 -0.1345 0.2849 0.9087 0.5718 0.4026 2001-2010 (Cluster 3) Algorithms 17 -0.3012 -0.1403 1.7033 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Laboratory tests 13 -0.1957 -0.1730 0.7334 2.5963 0.5577 0.4358 2001-2010 (Cluster 3) Rutting 55 -0.2470 -0.2710 0.6332 3.4539 0.3582 0.4312 2001-2010 (Cluster 3) Statistical analysis 46 0.0816 -0.0990 0.0735 0.0041 0.7133 0.0087 2011-2019 (Cluster 4) Flexible pavements 50 0.2018 -0.0134 0.4379 0.0088 0.9954 0.0044 2011-2019 (Cluster 4) Traffic speed 56 0.0847 -0.0134 0.4379 0.0186 0.0561 2011-2019 (Cluster 4) <td< td=""><td>Pavement design</td><td>45</td><td>-0.0480</td><td>-0.1130</td><td>0.0255</td><td>0.6389</td><td>0.0910</td><td>0.5041</td><td>2001–2010 (Cluster 3)</td></td<>	Pavement design	45	-0.0480	-0.1130	0.0255	0.6389	0.0910	0.5041	2001–2010 (Cluster 3)
Highway capacity44-0.1603-0.13450.28490.90870.57180.40262001-2010 (Cluster 3)Algorithms17-0.3012-0.14031.70331.67340.82110.17812001-2010 (Cluster 3)Finite element method48-0.0780-0.16870.06681.41460.16870.78872001-2010 (Cluster 3)Laboratory tests13-0.1957-0.17300.73342.59630.55770.43582001-2010 (Cluster 3)Rutting55-0.2470-0.27100.63323.45390.35820.43122001-2010 (Cluster 3)Hot mix asphalt53-0.2995-0.41170.93818.02840.34590.65352001-2010 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Field tests300.2070-0.15620.6414	Decision making	18	-0.0292	-0.1179	0.0155	1.1482	0.0480	0.7845	2001–2010 (Cluster 3)
Algorithms 17 -0.3012 -0.1403 1.7033 1.6734 0.8211 0.1781 2001-2010 (Cluster 3) Finite element method 48 -0.0780 -0.1687 0.0668 1.4146 0.1687 0.7887 2001-2010 (Cluster 3) Laboratory tests 13 -0.1957 -0.1730 0.7334 2.5963 0.5577 0.4358 2001-2010 (Cluster 3) Rutting 55 -0.2470 -0.2710 0.6332 3.4539 0.3582 0.4312 2001-2010 (Cluster 3) Statistical analysis 46 0.0816 -0.0090 0.0735 0.0041 0.7133 0.0087 2011-2019 (Cluster 4) Flexible pavements 50 0.2018 -0.0134 0.4379 0.0088 0.9954 0.0044 2011-2019 (Cluster 4) Surveys 10 0.1371 -0.0353 0.3921 0.1177 0.8461 0.0561 2011-2019 (Cluster 4) Field tests 30 0.2070 -0.1562 0.6414 1.6550 0.6371 0.3629 2011-2019 (Cluster 4) Field tests 30 0.2070 -0.1562 0.6414 1.655	Highway capacity	44	-0.1603	-0.1345	0.2849	0.9087	0.5718	0.4026	2001–2010 (Cluster 3)
Finite element method48-0.0780-0.16870.06681.41460.16870.78872001-2010 (Cluster 3)Laboratory tests13-0.1957-0.17300.73342.59630.55770.43582001-2010 (Cluster 3)Rutting55-0.2470-0.27100.63323.45390.35820.43122001-2010 (Cluster 3)Hot mix asphalt53-0.2995-0.41170.93818.02840.34590.65352001-2010 (Cluster 3)Statistical analysis460.0816-0.00900.07350.00410.71330.00872011-2019 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.2191.83670.05070.93822011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.2191.83670.52820.21562011-2019 (Cluster 4)Concrete pavements520.0457-	Algorithms	17	-0.3012	-0.1403	1.7033	1.6734	0.8211	0.1781	2001–2010 (Cluster 3)
Laboratory tests13-0.1957-0.17300.73342.59630.55770.43582001-2010 (Cluster 3)Rutting55-0.2470-0.27100.63323.45390.35820.43122001-2010 (Cluster 3)Hot mix asphalt53-0.2995-0.41170.93818.02840.34590.65352001-2010 (Cluster 3)Statistical analysis460.0816-0.00900.07350.00410.71330.00872011-2019 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.2191.88670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Field studies140.1839-0.27930.	Finite element method	48	-0.0780	-0.1687	0.0668	1.4146	0.1687	0.7887	2001–2010 (Cluster 3)
Rutting55-0.2470-0.27100.63323.45390.35820.43122001-2010 (Cluster 3)Hot mix asphalt53-0.2995-0.41170.93818.02840.34590.65352001-2010 (Cluster 3)Statistical analysis460.0816-0.00900.07350.00410.71330.00872011-2019 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Field studies140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Field studies260.1416-0.28820.31525	Laboratory tests	13	-0.1957	-0.1730	0.7334	2.5963	0.5577	0.4358	2001–2010 (Cluster 3)
Hot mix asphalt53-0.2995-0.41170.93818.02840.34590.65352001-2010 (Cluster 3)Statistical analysis460.0816-0.00900.07350.00410.71330.00872011-2019 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Traffic delays330.0357-0.14290.01661.21140.05090.81782011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Field studies240.25820.31525.91400.19320.79992011-2019 (Cluster 4)Field studies260.1416-0.28820.31525.9140	Rutting	55	-0.2470	-0.2710	0.6332	3.4539	0.3582	0.4312	2001–2010 (Cluster 3)
Statistical analysis460.0816-0.00900.07350.00410.71330.00872011-2019 (Cluster 4)Flexible pavements500.2018-0.01340.43790.00880.99540.00442011-2019 (Cluster 4)Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Traffic delays330.0357-0.14290.01661.21140.05090.81782011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.2914	Hot mix asphalt	53	-0.2995	-0.4117	0.9381	8.0284	0.3459	0.6535	2001–2010 (Cluster 3)
Flexible pavements 50 0.2018 -0.0134 0.4379 0.0088 0.9954 0.0044 2011-2019 (Cluster 4) Traffic speed 56 0.0847 -0.0184 0.0732 0.0156 0.6179 0.0291 2011-2019 (Cluster 4) Surveys 10 0.1371 -0.0353 0.3921 0.1177 0.8461 0.0561 2011-2019 (Cluster 4) Traffic delays 33 0.0357 -0.1429 0.0166 1.2114 0.0509 0.8178 2011-2019 (Cluster 4) Field tests 30 0.2070 -0.1562 0.6414 1.6550 0.6371 0.3629 2011-2019 (Cluster 4) Estimating 42 0.2598 -0.1581 0.7653 1.2846 0.7276 0.2696 2011-2019 (Cluster 4) Accuracy 28 0.3553 -0.1902 1.9050 2.4720 0.7526 0.2156 2011-2019 (Cluster 4) Concrete pavements 52 0.0457 -0.1965 0.0219 1.8367 0.0507 0.9382 2011-2019 (Cluster 4)	Statistical analysis	46	0.0816	-0.0090	0.0735	0.0041	0.7133	0.0087	2011–2019 (Cluster 4)
Traffic speed560.0847-0.01840.07320.01560.61790.02912011-2019 (Cluster 4)Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Traffic delays330.0357-0.14290.01661.21140.05090.81782011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Flexible pavements	50	0.2018	-0.0134	0.4379	0.0088	0.9954	0.0044	2011–2019 (Cluster 4)
Surveys100.1371-0.03530.39210.11770.84610.05612011-2019 (Cluster 4)Traffic delays330.0357-0.14290.01661.21140.05090.81782011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Traffic speed	56	0.0847	-0.0184	0.0732	0.0156	0.6179	0.0291	2011–2019 (Cluster 4)
Traffic delays330.0357-0.14290.01661.21140.05090.81782011-2019 (Cluster 4)Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Surveys	10	0.1371	-0.0353	0.3921	0.1177	0.8461	0.0561	2011-2019 (Cluster 4)
Field tests300.2070-0.15620.64141.65500.63710.36292011-2019 (Cluster 4)Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Traffic delays	33	0.0357	-0.1429	0.0166	1.2114	0.0509	0.8178	2011-2019 (Cluster 4)
Estimating420.2598-0.15810.76531.28460.72760.26962011-2019 (Cluster 4)Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Field tests	30	0.2070	-0.1562	0.6414	1.6550	0.6371	0.3629	2011-2019 (Cluster 4)
Accuracy280.3553-0.19021.90502.47200.75260.21562011-2019 (Cluster 4)Concrete pavements520.0457-0.19650.02191.83670.05070.93822011-2019 (Cluster 4)Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Estimating	42	0.2598	-0.1581	0.7653	1.2846	0.7276	0.2696	2011-2019 (Cluster 4)
Concrete pavements 52 0.0457 -0.1965 0.0219 1.8367 0.0507 0.9382 2011-2019 (Cluster 4) Field studies 34 0.3684 -0.2564 1.7067 3.7463 0.5282 0.2559 2011-2019 (Cluster 4) Traffic congestion 14 0.1839 -0.2793 0.6475 6.7676 0.3011 0.6945 2011-2019 (Cluster 4) Strategic planning 26 0.1416 -0.2882 0.3152 5.9140 0.1932 0.7999 2011-2019 (Cluster 4) Performance 27 0.5082 -0.2914 3.9024 5.8118 0.7405 0.2434 2011-2019 (Cluster 4)	Accuracy	28	0.3553	-0.1902	1.9050	2.4720	0.7526	0.2156	2011-2019 (Cluster 4)
Field studies340.3684-0.25641.70673.74630.52820.25592011-2019 (Cluster 4)Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019 (Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019 (Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019 (Cluster 4)	Concrete pavements	52	0.0457	-0.1965	0.0219	1.8367	0.0507	0.9382	2011-2019 (Cluster 4)
Traffic congestion140.1839-0.27930.64756.76760.30110.69452011-2019Cluster 4)Strategic planning260.1416-0.28820.31525.91400.19320.79992011-2019(Cluster 4)Performance270.5082-0.29143.90245.81180.74050.24342011-2019(Cluster 4)	Field studies	34	0.3684	-0.2564	1.7067	3.7463	0.5282	0.2559	2011-2019 (Cluster 4)
Strategic planning 26 0.1416 -0.2882 0.3152 5.9140 0.1932 0.7999 2011–2019 (Cluster 4) Performance 27 0.5082 -0.2914 3.9024 5.8118 0.7405 0.2434 2011–2019 (Cluster 4)	Traffic congestion	14	0.1839	-0.2793	0.6475	6.7676	0.3011	0.6945	2011–2019 (Cluster 4)
Performance 27 0.5082 -0.2914 3.9024 5.8118 0.7405 0.2434 2011-2019 (Cluster 4)	Strategic planning	26	0.1416	-0.2882	0.3152	5.9140	0.1932	0.7999	2011-2019 (Cluster 4)
	Performance	27	0.5082	-0.2914	3.9024	5.8118	0.7405	0.2434	2011-2019 (Cluster 4)

Note: The shadings are based on the clusters.

Topic I (Bridge maintenance) Top Words	Topic 11 (Freeway) Top Words				
Highest prob ^a : barrier, bridge, concrete, system, highways, maintenance, performance FREX ^b : barrier, lateral, needs, experimental, hazardous, improving, high-speed	Highest prob: system, evaluation, performance, information, freeway, management FREX: terminal, congestion, capacity, aggregate, freeway, speed				
Topic 2 (Travel data) Top Words	Topic 12 (Friction and soil science) Top Words				
Highest prob: data, travel, performance, modeling, vehicle, driving, evaluation FREX: driving, reliability, estimation, pedestrian, modeling, data, bicycle	Highest prob: utility, performance, soil, track, rail, soils, areas FREX: utility, track, soil, soils, rapid, areas, clay, microcomputer, friction				
Topic 3 (Railroad maintenance) Top Words	Topic 13 (Multimodal) Top Words				
Highest prob: maintenance, evaluation, recent, bus, rail, railroad, program FREX: recent, railroad, maintenance, computer, effectiveness, noise, bus	Highest prob: data, modeling, vehicle, performance, effects, design, management FREX: longitudinal, modeling, multimodal, speed, prediction, cracking, adaptive				
Topic 4 (Concrete bridge) Top Words	Topic 14 (Road safety) Top Words				
- Highest prob: evaluation, urban, design, bridge, system, stresses, concrete FREX: stresses, small, urban, bicycle, public, energy, accidents	Highest prob: evaluation, car, performance, urban, vehicle, crash, system FREX: road, experience, car, comparative, needs, predicting, safety				
Topic 5 (Structural performance) Top Words	Topic 15 (Pavement and bridge) Top Words				
Highest prob: system, vehicle, evaluation, concrete, stiffness, performance, vehicles FREX: stiffness, automated, vehicles, crash, vehicle, railway, factors	Highest prob: concrete, related, design, bridge, vehicle, management, properties FREX: related, accident, deformation, properties, fatigue, procedures, strategic				
Topic 6 (Pavement modeling) Top Words	Topic 16 (Informatics) Top Words				
Highest prob: design, concrete, modeling, information, evaluation, system, management FREX: guardrail, area, efficiency, modeling, intermodal, information, binders	Highest prob: system, performance, information, data, concrete, specification, vehicle FREX: specification, real, information, patterns, dynamic, validation				
Topic 7 (Choice model) Top Words	Topic 17 (Urban planning) Top Words				
Highest prob: travel, models, data, design, system, network, choice FREX: hot-mix, choice, network, toll, pricing, motor, intersections	Highest prob: automobile, travel, design, evaluation, urban, quality, models FREX: automobile, quality, considerations, demand, air, project, freeway				
Topic 8 (Rehabilitation) Top Words	Topic 18 (System evaluation) Top Words				
Highest prob: evaluation, concrete, design, closure, management, discussion, pavements FREX: closure, discussion, flexible, rehabilitation, reinforced, testing, operations	Highest prob: concrete, design, bridge, system, rail, used, evaluation FREX: used, light, cement, weight, deflectometer, statistical, conditions				
Topic 9 (Rail crossing) Top Words	Topic 19 (Transit) Top Words				
Highest prob: behavior, rail, data, transition, application, signalized, evaluation FREX: transition, signalized, generation, accuracy, routing, tests	Highest prob: design, concept, performance, system, evaluation, bus, management FREX: concept, trucks, large, structures, pressure, bridges, change				
Topic 10 (Barrier system) Top Words	Topic 20 (Low-volume road) Top Words				
Highest prob: barriers, system, evaluation, travel, potential, service, design	Highest prob: roads, evaluation, low-volume, models, sign, system, performance				
FREA: Darriers, zones, potential, empirical, proposed, economic, improved	rren: roads, low-volume, sign, traffic, measurement, models, impacts				

Table 3. Top 20 Topics Based on Highest Probability and Frequency-Exclusivity (FREX)

^aHighest prob: is the group of words within each topic with the highest probability.

^bFREX determines the frequency (harmonic mean of rank by probability within the topic) and exclusivity (rank by the distribution of topic given word) of the words by identifying words that distinguish topic.

Figure 7. Expected topic proportions by year (dotted lines indicate 95% confidence interval values).

level keyword visualization for a 20-topic model. The expected proportion of the keywords associated with a topic is shown in Figure 6. High-frequency topics include Topic 2 (travel data), Topic 7 (choice model), Topic 8 (rehabilitation), Topic 11 (freeway), and Topic 17 (urban planning).

Table 3 lists the top 20 topics (with the top four words in each topic) based on the highest probability (Prob) and frequency-exclusivity (FREX) measures. These measures are developed to identify terms that define a topic. "Prob" infers the probability that a term occurs in the topic. The other measure, FREX, considers two criteria: (i) determining how often a term occurs in each topic, and (ii) developing adjustment based on the degree to which the term is restricted to that topic. Table 3 lists words identified by two key measures: Prob and FREX.

Figure 7 shows the distribution of expected topic proportions by years. Nine topics have been randomly selected to show the trend over the years. From 1970 to 2019, one topic (road safety) showed an overall upward trend; the topic included the keywords in Topic 14 ("crash," "based," "driving," and "empirical"). Another topic (Topic 12), with the words "clay," "microcomputer," "simulation," and "discuss," showed a sharp decline in expected topic proportion after 1970 and then remained at a consistently low value from 1980 to 2019. Two topics showed a peak increase from about 1980 to 1990, before decreasing to a value of approximately zero. One of these topics contained the keywords "rehabilitation," "truck," "closure," and "road" (words in Topic 19); the other topic contained the keywords "railroad," "closure," "space," and "discuss" (words in Topic 3). Another topic showed a sharp increase from about 1970 to 1975 before decreasing to an approximate value of zero; this topic contained the keywords "aggregate," "air," and "small" (words in Topic 6). The other remaining topics generally remained consistent throughout the years, with minor fluctuations over time.

Visualizations of LDA Models

By using metadata, STM functions explain the trends over the years. As the current study is based on large textual contents (i.e., the titles have a bag of approximately

Figure 8. Interactive LDAvis tool for Transportation Research Record abstracts (http://subasish.github.io/pages/trr_abstract/).

323,000 words, and the abstracts have a bag of approximately six million words), there is a need to develop an interactive and comprehensive topic model. Recently the LDA model has been used primarily to visualize the output of topic models fit. However, the high dimensionality of the fitted model produces challenges in creating these visualizations. LDA is normally applied to thousands of documents, representing combinations of dozens to hundreds of topics, which are modeled as distributions across thousands of terms. To mitigate these challenges, interactivity is the best technique to create LDA visualizations. Interactivity is a basic technique that is both compact and thorough. In this study, the LDAvis package was employed to develop interactive LDA models (64). Figures 8 and 9 show interactive visualization of LDA topic models developed from paper abstracts and titles, respectively. The research team developed two web tools to demonstrate these interactive plots (65, 66). The plots are composed of two sections:

• The left section of the graphics represents a global perspective on the topic model. The topics are plotted as circles in a two-dimensional biplot. The locations of the topics are based on the measures

of principal component analysis. This visualization shows the distance between topics and projects the inter-topic distances onto two dimensions. The overall prevalence of each topic is then encoded using the areas of the circles to allow sorting the topics in decreasing order of prevalence (57).

- The right section of the graphics displays a bar chart (keywords are shown horizontally). The bars signify the individual terms that are the most suitable for interpreting the topics on the left, based on which topic is currently selected. This allows users to comprehend the meaning of each topic. The overlaid bars in the plot indicate corpus-wide and topic-specific frequency of the term respectively.
- Both sections of this visualization are inter-active. When the user selects a topic (on the left), the bar plot on the right highlights the most useful terms in a way to interpret the topic. Additionally, a term selection from the bar plot reveals the conditional distribution over topics in the biplot for the selected term. This functionality allows users to examine many topic-term relationships efficiently.

The findings of the paper are as follows:

Figure 9. Interactive LDAvis tool for Transportation Research Record titles (http://subasish.github.io/pages/trr_title/).

- The co-author network is very complex; it indicates that transportation research co-authorship is multi-disciplinary and broad.
- In topic proportions, research topics are diversified; however, travel demand-related studies showed higher topic proportions than other topics.
- Top 20 topic groups provide high-frequency words based on two scores. The words in each topic group infers the higher presence of these keywords in each group.
- The interactive visualization of the LDA topic models indicates that the topics developed from the journal titles are distinct when compared with topic models developed from journal abstracts.

Conclusion

In the fields of engineering and science, transportation is a key research area. Throughout the world, mining big data for potential trends and patterns has become an increasingly popular research topic. However, there has been a lack of research conducted in the field of transportation engineering to mine the data. The challenges and problems encountered in transportation research have constantly changed over time. Additionally, the scope of transportation research has become more diverse with multifarious inter-disciplinary topics and sub-topics. As a result, there has been an outbreak of transportation research publications since around 2010. In the present study, the research team performed topic modeling on text containing approximately six million words from the peer-reviewed abstracts and titles of 30,784 published TRR articles, dating back to 1974. To identify the research patterns from that period, this study applied two popular topic models, STM and LDA. This study also identified the top 20 topics that produced the highest word frequency measured by two scores: FREX and high probability. To explore more relevant patterns in the broad fields of transportation research, this study presents a unique tool to probe present content and prevalence to develop a disaggregated level correlation. In addition, this study produced two topic model interactive tools cultivated separately for TRR paper abstracts and titles. These specific methods have not yet been applied to the identification of the research trends from TRR articles. However, the present study demonstrates how STM, LDA, and other similar methods could be utilized

to offer the potential of natural language processing works in transportation research. Future research can improve the natural language processing methods used in the study by incorporating additional databases, such as state Department of Transportation reports and other national reports from top transportation journals.

This study identified topics that were both meaningful and representative; they mostly corresponded to established knowledge clusters in the transportation research field. The identified knowledge clusters unearth an environment for further transportation research works. This methodology is also suitable for other areas related to transportation engineering. The framework established in this study can be used in other studies within the domain of natural language processing.

Acknowledgments

The authors appreciate the assistance provided by the students on this project: Bita Maraghehpour and Ly-Na Tran.

Author Contributions

The authors confirm the contribution to the paper as follows: study conception and design: Subasish Das; data collection: Subasish Das and Anandi Dutta; analysis and interpretation of results: Subasish Das and Anandi Dutta; draft manuscript preparation: Subasish Das, Anandi Dutta, and Marcus Brewer. All authors reviewed the results and approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

- 1. Blei, D. Probabilistic Topic Models. *Communications of the ACM*, Vol. 55, No. 4, 2012, pp. 77–84.
- Grimmer, J., and B. Stewart. Text as Data: The Promise and Pitfalls of Automatic Content Analysis. *Political Analysis*, Vol. 21, No. 3, 2013, pp. 267–297.
- Hofmann, T. Probabilistic Latent Semantic Indexing. Proc., 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999.
- Blei, D., A. Ng, and M. Jordan. Latent Dirichlet Allocation. *The Journal of Machine Learning Research*, Vol. 3, 2003, pp. 993–1022.
- Chang, J., J. Boyd-Graber, S. Gerrish, C. Wang, and D. M. Blei. Reading Tea Leaves: How Humans Interpret

Topic Models. Advances in Neural Information Processing Systems, Vol. 22, 2009, pp. 288–296.

- Mimno, D., H. Wallach, E. Talley, M. Leenders, and A. McCallum. Optimizing Semantic Coherence in Topic Models. *Proc., Conference on Empirical Methods in Natural Language Processing*, Association for Computational Linguistics, Edinburgh, Scotland, 2011.
- Andrzejewski, D., and X. Zhu. Latent Dirichlet Allocation with Topic-in-Set Knowledge. Proc., NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, 2009.
- Andrzejewski, D., X. Zhu, and M. Craven. Incorporating Domain Knowledge into Topic Modeling via Dirichlet Forest Priors. *Proc.*, 26th Annual International Conference on Machine Learning, Montreal, Quebec, Canada, 2009.
- Andrzejewski, D., X. Zhu, M. Craven, and B. Recht. A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation using First-Order Logic. *Proc., 22nd International Joint Conference on Artificial Intelligence*, Barcelona, Spain, 2011.
- Chemudugunta, C., A. Holloway, P. Smyth, and M. Steyvers. Modeling Documents by Combining Semantic Concepts with Unsupervised Statistical Learning. *Proc., International Semantic Web Conference*, Springer, Berlin, Heidelberg, 2008, pp. 229–244.
- Chen, Z., A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh. Exploiting Domain Knowledge in Aspect Extraction. *Proc.*, 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, 2013.
- Chen, Z., A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh. Leveraging Multi-Domain Prior Knowledge in Topic Models. *Proc., 23rd International Joint Conference* on Artificial Intelligence, Stockholm, Sweden, 2013.
- Doshi-Velez, F., B. Wallace, and R. Adams. Graph-Sparse lda: A Topic Model with Structured Sparsity. *Proc., 29th AAAI Conference on Artificial Intelligence*, Austin, TX, 2015.
- Yao, L., Y. Zhang, B. Wei, H. Qian, and Y. Wang. Incorporating Probabilistic Knowledge into Topic Models. *Proc., Pacific-Asia Conference on Knowledge Discovery and Data Mining*, Springer, Cham, Switzerland, 2015, pp. 586–597.
- Blei, D., and J. Lafferty. Dynamic Topic Models. Proc., 23rd International Conference on Machine Learning, Association for Computing Machinery, New York, NY, 2006.
- Kalyanam, J., A. Mantrach, D. Saez-Trumper, H. Vahabi, and G. Lanckriet. Leveraging Social Context for Modeling Topic Evolution. *Proc.*, 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, 2015.
- Wang, X., and A. McCallum. Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends. Proc., 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, 2006.
- Wei, X., J. Sun, and X. Wang. Dynamic Mixture Models for Multiple Time-Series. *International Joint Conference on Artificial Intelligence*, Vol. 7, 2007, pp. 2909–2914.

- Yan, X., J. Guo, Y. Lan, J. Xu, and X. Cheng. A Probabilistic Model for Bursty Topic Discovery in Microblogs. *Proc.*, 29th AAAI Conference on Artificial Intelligence, Austin, TX, 2015.
- Eisenstein, J., A. Ahmed, and E. Xing. Sparse Additive Generative Models of Text. *Proc., 28th International Conference on Machine Learning*, Bellevue, WA, 2011, pp. 1041–1048.
- McLaurin, E., A. D. McDonald, J. D. Lee, N. Aksan, J. Dawson, J. Tippin, and M. Rizzo. Variations on a Theme: Topic Modeling of Naturalistic Driving Data. *Proc.*, 58th International Annual Meeting of the Human Factors and Ergonomics Society, Chicago, 2014. https://journals-sagepub-com.srv-proxy2.library.tamu.edu/doi/abs/10.1177/ 1541931214581443.
- 22. Sun, X., N. H. C. Yung, and E. Y. Lam. Unsupervised Tracking with the Doubly Stochastic Dirichlet Process Mixture Model. *IEEE Transactions on Intelligent Transportation Systems*, Vol. 17, No. 9, 2016, pp. 2594–2599. https: //doi.org/10.1109/TITS.2016.2518212.
- Sun, L., and Y. Yin. Discovering Themes and Trends in Transportation Research using Topic Modeling. *Transportation Research Part C: Emerging Technologies*, Vol. 77, 2017, pp. 49–66.
- 24. Venkatraman, V., Y. Liang, E. McLaurin, W. Horrey, and M. Lesch. Exploring Driver Responses to Unexpected and Expected Events using Probabilistic Topic Models. *Proc.*, 9th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Manchester, Vermont, 2017, pp. 375–381.
- 25. Das, S., X. Sun, and A. Dutta. Text Mining and Topic Modeling of Compendiums of Papers from Transportation Research Board Annual Meetings. *Transportation Research Record: Journal of the Transportation Research Board*, 2016. 2552: 48–56.
- Das, S., K. Dixon, X. Sun, A. Dutta, and M. Zupancich. Trends in Transportation Research: Exploring Content Analysis in Topics. *Transportation Research Record: Journal of the Transportation Research Board*, 2017. 2614: 27–38.
- 27. Das, S. #TRBAM: Social Media Interactions from the Largest Transportation Conference. *TR News*, 2019, pp. 18–23.
- Das, S., A. Dutta, T. Lindheimer, M. Jalayer, and Z. Elgart. YouTube as a Source of Information in Understanding Autonomous Vehicle Consumers: Natural Language Processing Study. *Transportation Research Record: Journal of the Transportation Research Board*, 2019. 2673: 242–253.
- 29. Das, S., A. Dutta, G. Medina, L. Minjares-Kyle, and Z. Elgart. Extracting Patterns from Twitter to Promote Biking. *IATSS Research*, Vol. 43, No. 1, 2019, p. pp 51–59.
- Boyer, R., W. Scherer, and M. Smith. Trends over Two Decades of Transportation Research: A Machine Learning Approach. *Transportation Research Record: Journal of the Transportation Research Board*, 2017. 2614: 1–7.
- Hong, J., R. Tamakloe, G. Lee, and D. Park. Insight from Scientific Study in Logistics using Text Mining.

Transportation Research Record: Journal of the Transportation Research Board, 2019. 4: 97–107.

- 32. Biehl, A., Y. Chen, K. Sanabria-Veaz, D. Uttal, and A. Stathopoulos. Where Does Active Travel Fit within Local Community Narratives of Mobility Space and Place? *Transportation Research Part A: Policy and Practice*, Vol. 123, 2019, pp. 269–287.
- Rosen-Zvi, M., T. Griffiths, M. Steyvers, and P. Smyth. The Author-Topic Model for Authors and Documents. *Proc., 20th Conference on Uncertainty in Artificial Intelli*gence, AUAI Press, Arlington, VA, 2004.
- Qi, W., M. Quing, B. Xia, and N. An. Discovering Regulatory Concerns on Bridge Management: An Author-Topic Model Based Approach. *Transport Policy*, Vol 75, 2019, pp. 161–170.
- Ahmed, A., and E. Xing. Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis. *Proc.*, 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, 2010, pp. 1140–1150.
- Eisenstein, J., B. O'Connor, N. Smith, and E. Xing. A Latent Variable Model for Geographic Lexical Variation. *Proc.*, 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, 2010, pp. 1277–1287.
- Lee, J. D., and K. Kolodge. Understanding Attitudes Towards Self-Driving Vehicles: Quantitative Analysis of Qualitative Data. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, Vol. 62, No. 1, 2018, pp. 1399–1403. https://doi.org/10.1177/1541931218621319.
- Kuhn, K. D. Using Structural Topic Modeling to Identify Latent Topics and Trends in Aviation Incident Reports. *Transportation Research Part C: Emerging Technologies*, Vol. 87, 2018, pp. 105–122.
- Blei, D. M. Probabilistic Models of Text and Images. University of California, Berkeley, CA, 2004.
- Blei, D. M., and M. I. Jordan. Variational Inference for Dirichlet Process Mixtures. *Bayesian Analysis*, Vol. 1 No. 1, 2006, pp. 121–144.
- Girolami, M., and A. Kabán. On an Equivalence Between PLSI and LDA. Proc., SIGIR '03 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, 2003, pp. 433–434.
- 42. Masada, T., S. Kiyasu, and S. Miyahara. Comparing LDA with PLSI as a Dimensionality Reduction Method in Document Clustering. Proc., 3rd International Conference on Large-Scale Knowledge Resources: Construction and Application, Tokyo, Japan, 2008, pp. 13–26.
- Kim, Y., and K. Shim. TWILITE: A Recommendation System for Twitter using a Probabilistic Model Based on Latent Dirichlet Allocation. *Information Systems*, Vol. 42, 2014, pp. 59–77.
- Roberts, M., B. Stewart, and D. Tingley. stm: R Package for Structural Topic Models. 2016. http://www.structuraltopicmodel.com. Accessed July 2016.
- Roberts, M. E., B. M. Stewart, D. Tingley, C. Lucas, J. Leder Luis, and S. K. Gadarian. Structural Topic Models for Open-Ended Survey Responses. *American Journal of Political Science*, Vol. 58, No. 4, 2014, pp. 1064–1082.

- Bauer, P. C., P. Barberá, K. Ackermann, and A. Venetz. Is the Left-Right Scale a Valid Measure of Ideology? *Political Behavior*, Vol. 39, No. 3, 2017, pp. 553–583.
- 47. Farrell, J. Corporate Funding and Ideological Polarization About Climate Change. *Proceedings of the National Academy of Sciences*, Vol. 113, No. 1, 2016, pp. 92–97.
- Tingley, D. Rising Power on the Mind. International Organization, Vol. 71, No. S1, 2017, pp. S165–S188.
- Tvinnereim, E., and K. Fløttum. Explaining Topic Prevalence in Answers to Open Ended Survey Questions about Climate Change. *Nature Climate Change*, Vol. 5, No. 8, 2015, p. 744–747.
- Nan, H., T. Zhang, B. Gao, and I. Bose. What Do Hotel Customers Complain About? Text Analysis using Structural Topic Model. *Tourism Management*, Vol. 72, 2019, pp. 417–426.
- Blei, D. M., and J. D. Lafferty. A Correlated Topic Model of Science. *Annals of Applied Statistics*, Vol. 1, No. 1, 2007, pp. 17–35.
- 52. Das, S. Heatmap of the Most Prolific TRR Authors. https://rpubs.com/subasish/507543. Accessed July 21, 2020.
- Das, S., and R. Wang. http://subasish.github.io/pages/ gephi_html/TRR_C/network/. Accessed July 21, 2020.
- Das, S., R. Avelar, K. Dixon, and X. Sun. Investigation on the Wrong Way Driving Crash Patterns using Multiple Correspondence Analysis. *Accident Analysis & Prevention*, Vol. 111, 2018, pp. 43–55.
- 55. Das, S., and G. Griffin. Investigating the Role of Big Data in Transportation Safety. *Transportation Research Record: Journal of the Transportation Research Board*, 2020. 2674: 244–252.
- Das, S., and X. Sun. Exploring Clusters of Contributing Factors for Single-Vehicle Fatal Crashes through Multiple Correspondence Analysis. Presented at 93rd Annual Meeting of the Transportation Research Board, Washington, D.C., 2014.

- Das, S., and X. Sun. Factor Association with Multiple Correspondence Analysis in Vehicle–Pedestrian Crashes. *Transportation Research Record: Journal of the Transportation Research Board*, 2015. 2519: 95–103.
- Das, S., A. Dutta, and K. Fitzpatrick. Technological Perception on Autonomous Vehicles: Perspectives of the Non-Motorists. *Technology Analysis & Strategic Management*, 2020, pp. 1–18. https://doi.org/10.1080/09537325.2020. 1768235.
- Das, S., L. Tran, and M. Theel. Understanding Patterns in Marijuana Impaired Traffic Crashes. *Journal of Substance Use*, 2020, pp. 1–9. https://doi.org/10.1080/14659891.2020. 1760381.
- Das, S., and A. Dutta. Extremely Serious Crashes on Urban Roadway Networks: Patterns and Trends. *IATSS Research*, 2020. https://doi.org/10.1016/j.iatssr.2020.01.003.
- 61. Das, S., A. Dutta, A. Mudgal, and S. Datta. Non-Fear-Based Road Safety Campaign as a Community Service: Contexts from Social Media. In *Innovations for Community Services. 14CS 2020* (Rautaray, S., G. Eichler, C. Erfurth, and G. Fahrnberger, eds.), *Communications in Computer and Information Science*, Springer, Cham, Vol. 1139, 2020.
- 62. Das, S., L. Minjares-Kyle, L. Wu, and R. Henk. Understanding Crash Potential Associated with Teen Driving: Survey Analysis using Multivariate Graphical Method. *Journal of Safety Research*, Vol. 70, 2019, pp. 213–222.
- Feinerer, I., K. Hornik, and D. Meyer. Text Mining Infrastructure in R. *Journal of Statistical Software*, Vol. 25, No. 5, 2008, pp. 1–54.
- Sievert, C., and K. Shirley. LDAvis: Interactive Visualization of Topic Models. R package version 0.3.2. https:// CRAN.R-project.org/package=LDAvis. Accessed July 21, 2020.
- Das, S. Interactive LDAvis Tool for TRR abstracts. http:// subasish.github.io/pages/trr_abstract/. Accessed July 21, 2020.
- Das, S. Interactive LDAvis Tool for TRR titles. http://subasish.github.io/pages/trr_title/. Accessed July 21, 2020.