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Abstract
This study employs two topic models to perform trend mining on an abundance of textual data to determine trends in
research topics from immense collections of unstructured documents over the years. This study collected data from the titles
and abstracts of the papers published in Transportation Research Record: Journal of the Transportation Research Board, since 1974.
The content of these papers was ideal for examining research trends in various fields of research because it contains large
textual data. In previous studies, exploratory analysis tools such as text mining were used to provide descriptive information
about the data. However, this method does not provide researchers with quantifications of the topics and their correlations.
Furthermore, the contents examined in this study are largely unstructured, and therefore they require faster machine learn-
ing algorithms to decipher them. For these reasons, the research team chose to employ two topic modeling tools, latent
Dirichlet allocation and structural topic model, to perform trend mining. This analysis succeeded in extracting 20 main topics,
identified by keywords, from the data. The research team also developed two interactive topic model visualization tools that
can be used to extract topics from journal titles and abstracts, respectively. The findings from this study provide researchers
with a further understanding of research patterns within ever-evolving area of transportation engineering studies.

The rising application of emerging technologies, the
increasing number of peer-reviewed journals and confer-
ence proceedings, and the significant growth in interdisci-
plinary collaborations, all reflect the significance of the
size and scope of transportation research. Transportation
challenges and problems, however, have changed over
time, and the scope of transportation research has also
become more diverse. The domain of transportation
research includes a broad inter-disciplinary coverage of
topics, from classic topics such as signal control and traf-
fic congestion to societal problems such as environmental
justice and sustainability to new technologies such as big
data analytics, connected vehicles, automated vehicles,
and application of artificial intelligence. Because of the
consistent evolution from the advances in solutions/tech-
nologies developed and the specific questions raised,
transportation research has experienced an upsurge of
research publications in recent decades.

Predicting future salient issues in any field of science that
will dominate research is always a challenge, but as trans-
portation research becomes more complex and cross-cut-
ting, this challenge will increase. Research in relation to
statistical models of co-occurrence of trending topics has
led to the growth of different useful topic models. This effi-
cient machine learning technique helps researchers find con-
cealed trends inside unstructured larger textual contents.

The Transportation Research Board (TRB) coordi-
nates the most comprehensive and largest annual trans-
portation conference in the world. Since its establishment
in 1920 as the National Advisory Board on Highway
Research, TRB has provided a platform to convert
research results into applicable information about every
facet pertaining to transportation engineering. Thousands
of scientists, engineers, and other transportation practi-
tioners and researchers from the private and public sectors
and academia are all included in the TRB’s various
activities.

The Transportation Research Record (TRR) series is
the official journal of the TRB and publishes technical
papers that have been accepted for publication through a
rigorous peer-review process refereed by TRB technical
committees. These papers provide extensive documenta-
tion of the research activities undertaken by the transpor-
tation research community, and they provide a unique
insight into the research topics that have remained active
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over the long term as well as topics that have recently
emerged into the forefront.

To comprehend the research trends in the realm of
complex transportation engineering, an analysis of TRR
journal articles would be beneficial. By applying a latent
Dirichlet allocation (LDA) model, this study presents an
empirical analysis of 30,784 articles published in TRR
from 1974 to 2019 to identify trends in topics, keywords,
and authors over time.

Literature Review

In recent years, probabilistic topic models, such as LDA
(1), have become a popular research tool to interpret
large amounts of textual data. Researchers have noted
the importance of topic models (2) in measuring latent
linguistic significance. Most studies involving text mining
analysis employ statistical topic models such as probabil-
istic latent semantic analysis (PLSA) (3), in addition to
LDA (4). However, these models are unsupervised,
meaning the explanatory variables and response vari-
ables are not clearly defined; this can result in topics that
are not interpretable (5, 6).

To improve LDA and other conventional methods,
researchers proposed a wide variety of knowledge-based
topic models (7–14) and dynamic topic models (DTMs)
(15–19). Furthermore, researchers examined the suitabil-
ity of the automatic coherence measure of topic models
and developed unsupervised models to improve the
coherence score by using the word ‘‘co-occurrence’’
within a collection of texts (20). Researchers have also
proposed DTMs in which time is a significant consider-
ation, such as topic over time (TOT) (17) and dynamic
mixture model (DMM), to mine dynamic patterns (4, 17,
18, 21). Additionally, several researchers have recently
suggested nonparametric Bayesian models, based on
Dirichlet process (DP), to consider space and time while
developing the models (16–20).

McLaurin et al. (21) applied topic modeling to driving
data and distinguished key associations between drivers
with obstructive sleep apnea and normal drivers. Sun
et al. (22) used the temporal doubly stochastic Dirichlet
process mixture model and presented an unsupervised
tracking algorithm to detect human mobility and car
route. In their study, Sun and Yin (23) used an LDA
model on the abstracts of journal articles to deduce 50
key topics. Their results indicated that the characterized
topics are insightful.

Venkatraman et al. (24) investigated ‘‘differences
between drivers’’ lateral responses in various events uti-
lizing probabilistic topic modeling. Another worthwhile
study of topic modeling in the transportation field was
conducted by Das et al. (25) in which they studied topic
changes of abstracts from papers presented at the TRB

Annual Meeting from 2008 to 2014. Das et al. used text
mining and topic modeling in several other transporta-
tion studies (26–29). Two recent studies used text mining
and topic modeling TRB compendium papers and TRR
papers (30, 31). In a recent study, Biehl (32) used both
text mining and topic modeling techniques to investigate
the publicity of non-motorized trip adoption utilizing
several focus groups of the local residents in two loca-
tions: Chicago’s Humboldt Park neighborhood and the
suburb of Evanston. They combined conventional dis-
course analysis with popular natural language processing
tools such as topic modeling and sentiment analysis.

The framework behind considering information or
meta-data at corpus (i.e., a group of texts) level, in the
modeling framework, uses the altercation of the prior
distributions to partly pool knowledge amongst similar
documents. Researchers have explored incorporating
meta-data into models from various aspects: author-
topic model (33, 34), topical content/ideology (35), geo-
graphy (36), trend analysis (26), attitudes on self-driving
cars (37), and aviation incident reports (38).

Topic Modeling

LDA

In 2003, Blei et al. developed the LDA model to address
the issues found in the probabilistic latent semantic anal-
ysis (PLSI) model (4, 39, 40). Improving on the PLSI
model, the LDA model uses a K-dimensional latent ran-
dom variable. This variable presents the topic mixture
ratio of the document by following the Dirichlet distribu-
tion. The LDA model is the most widely used of topic
models (41).

The LDA model is more capable of matching the
semantic conditions than other models. The parameter
space of this model is simpler than the PLSI model.
Additionally, this hierarchical model, with a more
balanced configuration, avoids any overfitting criteria
because its parameter space is not relevant to the number
of training documents in LDA (41). This model is gener-
ally considered as a complete probability generative
model (41, 42).

The authors mostly followed the study by Kim and
Shim (43) for a brief overview of LDA. Consider U and
Du imply the set of users and the user (u 2 U ) generated
‘‘bag of words.’’ Consider V as the set of unique words
showing in a bag of words Du at least once for a user
u 2 U . It represents the set of latent topics where the
number of topics is given as a parameter, Z. In this pro-
cess, each user u has their own preference over the topics
represented by a probabilistic distribution uu

!
, which is a

multinomial distribution over Z. Also, each topic z, hav-
ing a multinomial distribution over V , can be denoted by
[z

�!
.
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Figure 1 illustrates the visualization of this frame-
work. The generative process of this method can be
defined, following Kim and Shim (43):

� For each topic z 2 Z, consider a multinomial dis-
tribution [z ;Dirð~bÞ.

� For each user u 2 U , consider a multinomial dis-
tribution [u ;Dir ~að Þ.

� For each word w 2 Du,

8 consider a topic z ;Multinomialðuu

!Þ.
8 consider a word w ;Multinomialð[z

�!Þ.
This modeling framework considers the multinomial

distributions uu

!
and [z

�!
to be determined by conjugate

prior distributions, known as Dirichlet distribution with
parameters ~a and ~b respectively. Each w in Du can be
designated by first obtaining z with following the topic
preference distribution uu

!
. Next, selection of w from the

corresponding distribution [z

�!
of the selected z can be

determined. For this framework, the probability of w

being produced by u can be determined by:

ð
Dir uu; að Þ

XZj j

z= 1

uuz[zw

 !
duu:

STM

In political science and linguistics, STM has been used for
text data analysis (44–49). Both LDA and STM are
Bayesian generative topic models. The assumption for
both methods considers each topic as a distribution over
words and each document as a mixture of corpus (collec-
tion of texts) based topics (1, 4, 44, 45). The algorithm of
STM identifies document-level structure information to
affect topical prevalence (for example, proportion of topics
by document frequency) and topic content (distribution of
the keywords in topics). It emphasizes the appropriate
determination of investigating how covariates affect the
content of text documents. The authors mostly followed
the study by Hu et al. (50) for a brief overview of this sec-
tion. A brief introduction on STM is described below and
readers are advised to read companion papers (1, 4, 44,
45) for comprehensive theoretical details.

Figure 1 presents the technical differences between the
frameworks of STM and LDA models. Each node is rep-
resented by a variable, which is labeled with its role in
the data generating process. The shaded nodes are the
real variables and the unshaded nodes are latent vari-
ables. The rectangles in Figure 1 indicate replication:
n 2 1; 2; . . . ;Nf g implies words within a document;
k 2 1; 2; . . . ;Kf g implies each topic with the assumption
of selected topics as K; and d 2 1; 2; . . . ;Df g indexes the
document indices. Figure 1 also shows that only node w

(i.e., words in documents) is seen in both frameworks.

The overall aim is to gain latent topic information from
the observed words, W , by producing two key measures:
per-document topic proportions, u, and topic-word distri-
butions, b. Figure 1 also shows that both models include
three major elements: (i) topical prevalence parameters,
(ii) the core language model, and (iii) topical content
parameters (50). It is important to note that the core lan-
guage model elements for both models are the same,
where ud and bd, k, v imply the latent per-document topic
proportions and per-corpus topic-word distributions,
respectively; zd, n denotes the hidden topic assignment of
each stated term; and wd;n implies the stated term, which
is drawn from words indexed by v 2 1; 2; . . . ;Vf g. The
core language model of both approaches follows the two-
step generative process for each d in the corpus (1, 4, 50).

� Step 1: perform random choice of a distribution
over topics for d.

� Step 2: for each wn in d, (i) conduct random
choice of zd, n from the distribution over topics ud

in Step 1. (ii) conduct random choice of wn from
the corresponding distribution over the vocabu-
lary bd, k, v, where k = zd, n.

Two measures (topical prevalence and topical con-
tent) differentiate between these models. Particularly, the
topical prevalence measures in LDA are shared prior
Dirichlet parameters a hð Þ, while those of STM are
replaced with prior structures specified in the form of

Figure 1. Latent Dirichlet allocation (LDA) and structural topic
model (STM) frameworks.
Source: Nan et al. (50).
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generalized linear models parameterized by document
specific covariates (44, 50). For both models, parameters
can be estimated by methods such as partially-collapsed
variational expectation-maximization algorithm.

There are two major differences between STM and
LDA. First, with the help of STM, the researchers can
introduce document-level covariates to parameters asso-
ciated with topic prevalence to uncover document-topic
proportions (44). Second, STM introduced document-
level covariates to explore topic-word distributions as
topic content parameters (44, 50, 51).

Methodology

Data Collection

The research team desired a robust, long-standing jour-
nal to conduct an analysis of trends for topics, authors,
and keywords. The current study selected the TRR series
based on its long history and its inclusion of a wide vari-
ety of subject matter. The TRR series was also attractive
because of its rigorous review process and widespread
use among both academia and practitioners. The
research team used the Transport Research International
Documentation (TRID) website to develop the databases
for this study. All TRR articles are first saved in the
research information system (RIS) format. Later, the
database is converted into spreadsheet format. The col-
umns in the database include the title of the paper, key-
words, abstract, authors, and publication year. This
analysis included 30,784 articles (see Table 1) published
between 1974 and 2019. Publication years of the articles
were extracted from TRID metadata.

Exploratory Text Mining

Prolific Authors and Co-Author Networks. The authors devel-
oped a web-based interactive visualization of the heat-
map, shown in Figure 2, to list the top 25 most prolific
authors of the TRR articles and illustrate the frequency
of publication for each author (52). The authors are
listed in alphabetical order by last name. The colors indi-
cate the number of TRR articles published by each
author by year. The light-yellow color, primarily shown
toward the left side of the heat map, indicates the begin-
ning of the scientific careers for these prolific authors.
The colors indicate number of articles (low numbers in
light yellow to large numbers in dark color by using
’inferno’ color scale) published by the author in the given
year. As shown in Figure 2, Serge Hoogendoorn pub-
lished 18 TRR articles in 2016, which is the maximum
number of TRR articles as an author or co-author in
one year. Hani Mahmassani has published the highest
number of TRR articles (a total of 183 articles) since
1984. Four of the listed researchers started their

publication in the early days of the TRR journal.
Another four researchers started their careers in the
1980s. Most of the other authors started publishing
papers in TRR after 1990. It is important to note that
the numbers produced in this article are based on TRID
data only.

Co-authorship networks can be used to investigate the
structure of scientific collaborations. As transportation

Table 1. Number of Journal Articles and Word Counts in Titles
and Abstracts by Year, 1974–2019

Year
Number of

articles
Total words

in titles
Total words
in abstracts

1974 368 3,002 52,494
1975 222 1,741 31,397
1976 623 5,256 96,121
1977 446 3,686 70,583
1978 479 4,080 80,370
1979 456 3,930 73,217
1980 474 4,006 71,791
1981 526 4,527 80,871
1982 589 4,947 98,103
1983 613 5,507 104,646
1984 607 5,306 93,568
1985 505 4,650 84,221
1986 542 4,934 88,476
1987 591 5,590 102,616
1988 543 5,146 92,709
1989 471 4,467 81,260
1990 587 5,579 102,819
1991 797 7,507 140,139
1992 615 5,888 110,179
1993 638 6,129 112,400
1994 605 5,935 114,134
1995 614 6,026 114,238
1996 727 6,952 133,387
1997 595 6,046 113,570
1998 613 6,313 115,072
1999 729 7,516 142,228
2000 703 7,104 136,395
2001 676 7,163 127,888
2002 662 6,942 127,733
2003 759 8,096 150,420
2004 689 7,395 134,013
2005 834 9,274 163,373
2006 816 9,070 160,726
2007 825 9,277 166,216
2008 703 7,932 142,645
2009 779 8,973 156,838
2010 951 11,160 189,703
2011 995 11,754 202,750
2012 939 11,177 191,928
2013 931 11,115 193,258
2014 932 11,377 195,497
2015 971 11,837 204,261
2016 875 10,847 186,506
2017 866 10,812 182,574
2018 719 9,300 153,102
2019 (partial) 584 7,461 124,637
Total 30,784 322,732 5,791,072
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research has become increasingly cross-disciplinary, it is
important to investigate the patterns and trends of the
authors. The current study is limited to developing a co-

author network plot for a quick understanding of the
complex interdisciplinary networks between the authors.
Future studies can explore the development of advanced
analysis like author-topic model development. The net-
work plot, shown in Figure 3, shows the network pat-
terns of the authors that have at least one TRR article as
author or co-author. The complexity of this network
indicates the massive number of nodes and links between
the authors. The research team used Gephi 0.9.2 to cre-
ate network plots to explore the network of co-authors.
First, the research team used the R software to create a
GDF file, with link-in and link-out counts as an attri-
bute. The GDF file was then imported to Gephi. The
research team then prepared a network visualization
using the ForceAtlas algorithm, which will group the
nodes with similar connection. The node sizes are pro-
portional to link-in counts and colored by different
nodes. Imad Al-Qadi and Darcy Bullock are the two
authors with the highest number of co-author connec-
tions (127 and 123, respectively). The research team also
created an interactive web tool that allows the users to
explore the co-authorship network interactively (53).

Figure 2. Heatmap of prolific Transportation Research Record
(TRR) authors (https://rpubs.com/subasish/507543).

Figure 3. Coauthorship network (http://subasish.github.io/pages/gephi_html/TRR_C/network/).
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Multiple Correspondence Analysis of Top Keywords

Multiple correspondence analysis (MCA) can be consid-
ered as an unsupervised modeling technique (i.e., with no
pre-defined response variable). This approach entails the
construction of a matrix established on pairwise cross-
tabulation of each variable (54). By considering P as the
number of attributes (in this case, ‘‘keywords’’ in a cor-
pus) and I as the number of transactions (e.g., corpus). It
will produce a matrix of I 3 P. If Lp is the number of
attributes for variable p, then the total number of attri-
butes for all variables can be defined as L ¼

Pp
p= 1 Lp. In

the new matrix I 3 L, each of the keywords will contain
several columns to show all possible values. The cluster
or group of attributes is considered as a weighted combi-
nation of J points. Here, attribute j is signified by a point
denoted by Cj with weightage of nj. For each variable,
the sum of the weights of attribute points is n. For the
whole set J, the sum can be represented by nP. The rela-
tive weight wj for point Cj can be denoted as
wj = nj= nPð Þ= fj=P. To gain an overall idea of different
variants of CA and their applicability, interested readers
can consult the authors’ previous studies (55–62).

To define different clusters (generated from the location
of individual data points or individual attributes), MCA
produces several parameters. Because of the overlapping in
coordinates with the use of a large set of attributes, biplot
is sometimes limited in visualization capacity. The cos2

(square cosine of the parameter) indicates a quality mea-
sure to provide degree of association between attributes
and an axis. If the attribute is well represented by both
dimensions for a two-dimensional space, the sum of the
cos2 will be approximately one. Attributes with large cos2

values contribute the most to a particular axis or dimen-
sion. The publication years are grouped into four cate-
gories (by decade) for easy interpretation. The location of
the years indicates a clockwise rotation (Figure 4). Four
different clusters of keywords have been developed based
on their coordinates (cluster 1: upper right, cluster 2: upper
left, cluster 3: lower left, cluster 4: lower right).

Table 2 lists the parameters developed by the top 60
keywords. Figure 5 shows the percentage increase of the
keywords in the four-decade groups. Word size indicates
the percentage over the decade groups, and color repre-
sents the decade groups. The higher percentages of some
of the terms indicate that exponential growth occurred
during these time periods. For example, the keywords
‘‘social network’’ shows around a 1,000% increase dur-
ing 2010–2019 compared with 2001–2009.

Topic Modeling Results and Discussions

Structural Topic Model

The research team performed the analysis by using open
source R package ‘‘stm,’’ (44) and topic model, ‘‘tm’’
(63). The data processing work will generate documents,
vocabulary, and metadata that STM incorporates into
the topic modeling context.

Metadata, associated with a topic, covariates for topi-
cal prevalence that allow metadata to determine the topic
counts. The current model is converged after 46 iterations
(maximum threshold: 150). Figure 6 illustrates the corpus

Figure 4. Distribution of keywords by year (multiple
correspondence analysis plot).

Figure 5. Variations of words used from 1974 to 2019.

Figure 6. Top 20 topics.
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Table 2. Multiple Correspondence Analysis Measures for the Top 60 Keywords

Keyword Rank

Coordinates Contributions cos2

ClusterDim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

Evaluation 57 0.4837 0.4117 2.3821 7.8198 0.5538 0.4013 1974–1990 (Cluster 1)
Pavements 11 0.6888 0.1840 9.5413 3.0833 0.8963 0.0639 1974–1990 (Cluster 1)
Costs 16 0.3676 0.1748 2.5501 2.6123 0.7517 0.1700 1974–1990 (Cluster 1)
Transportation planning 9 0.1905 0.1279 0.7646 1.5613 0.2301 0.1037 1974–1990 (Cluster 1)
Measures of effectiveness 59 0.8672 0.1272 7.2738 0.7090 0.9712 0.0209 1974–1990 (Cluster 1)
Speed 54 0.1401 0.1203 0.2046 0.6828 0.5503 0.4054 1974–1990 (Cluster 1)
Forecasting 4 0.5395 0.1113 7.4870 1.4431 0.9581 0.0408 1974–1990 (Cluster 1)
Mathematical models 1 0.1543 0.0654 0.9596 0.7812 0.5132 0.0922 1974–1990 (Cluster 1)
Level of service 43 0.0730 0.0598 0.0592 0.1799 0.1966 0.1319 1974–1990 (Cluster 1)
Data collection 3 0.2195 0.0298 1.3648 0.1141 0.9819 0.0181 1974–1990 (Cluster 1)
Cost effectiveness 40 0.2738 0.0172 0.8562 0.0154 0.9322 0.0037 1974–1990 (Cluster 1)
Alternatives analysis 12 0.6357 0.0150 8.0645 0.0202 0.8881 0.0005 1974–1990 (Cluster 1)
Design 29 0.5094 0.0135 3.9053 0.0124 0.9967 0.0007 1974–1990 (Cluster 1)
Methodology 38 –0.2995 0.3766 1.0367 7.4241 0.3626 0.5732 1991–2000 (Cluster 2)
Optimization 21 –0.2560 0.1848 1.1240 2.6528 0.6034 0.3144 1991–2000 (Cluster 2)
Highway safety 15 –0.6401 0.1848 7.8393 2.9586 0.9180 0.0765 1991–2000 (Cluster 2)
Public transit 6 –0.1094 0.1748 0.2946 3.4049 0.2018 0.5150 1991–2000 (Cluster 2)
Drivers 24 –0.1443 0.1738 0.3458 2.2752 0.3293 0.4783 1991–2000 (Cluster 2)
Travel demand 19 –0.2963 0.1732 1.5809 2.4489 0.6988 0.2390 1991–2000 (Cluster 2)
Mode choice 47 –0.2899 0.1519 0.9231 1.1492 0.7624 0.2095 1991–2000 (Cluster 2)
Traffic volume 41 –0.0732 0.1494 0.0610 1.1501 0.1391 0.5785 1991–2000 (Cluster 2)
Behavior 31 –0.4127 0.1480 2.4630 1.4348 0.8548 0.1099 1991–2000 (Cluster 2)
Urban areas 23 –0.1033 0.1328 0.1785 1.3347 0.3707 0.6117 1991–2000 (Cluster 2)
Crash rates 60 –0.1036 0.1249 0.1035 0.6813 0.4071 0.5917 1991–2000 (Cluster 2)
Asphalt pavements 35 –0.2368 0.0829 0.6820 0.3788 0.6774 0.0831 1991–2000 (Cluster 2)
Environmental impacts 58 –0.1616 0.0809 0.2588 0.2935 0.6343 0.1588 1991–2000 (Cluster 2)
United States 51 –0.4106 0.0505 1.7794 0.1217 0.8472 0.0128 1991–2000 (Cluster 2)
Pavement performance 8 –0.0686 0.0407 0.1022 0.1631 0.4506 0.1587 1991–2000 (Cluster 2)
Signalized intersections 32 –0.4079 0.0035 2.2652 0.0008 0.9846 0.0001 1991–2000 (Cluster 2)
Asphalt mixtures 36 –0.4024 0.0032 1.9222 0.0005 0.9899 0.0001 1991–2000 (Cluster 2)
Traffic flow 20 –0.3425 –0.0077 2.0272 0.0047 0.9351 0.0005 2001–2010 (Cluster 3)
Simulation 7 –0.0188 –0.0303 0.0079 0.0931 0.1810 0.4715 2001–2010 (Cluster 3)
Travel behavior 22 –0.5087 –0.0364 4.3608 0.1010 0.9949 0.0051 2001–2010 (Cluster 3)
Traffic safety 39 –0.2472 –0.0375 0.7001 0.0729 0.9531 0.0219 2001–2010 (Cluster 3)
Regression analysis 49 –0.0783 –0.0460 0.0672 0.1049 0.6459 0.2228 2001–2010 (Cluster 3)
Case studies 2 –0.3244 –0.0526 3.7134 0.4426 0.8960 0.0236 2001–2010 (Cluster 3)
Travel time 5 –0.4370 –0.0540 4.7353 0.3275 0.9601 0.0147 2001–2010 (Cluster 3)
Traffic simulation 37 –0.2344 –0.0799 0.6393 0.3361 0.8652 0.1004 2001–2010 (Cluster 3)
Freeways 25 –0.0688 –0.1112 0.0760 0.9010 0.2401 0.6279 2001–2010 (Cluster 3)
Pavement design 45 –0.0480 –0.1130 0.0255 0.6389 0.0910 0.5041 2001–2010 (Cluster 3)
Decision making 18 –0.0292 –0.1179 0.0155 1.1482 0.0480 0.7845 2001–2010 (Cluster 3)
Highway capacity 44 –0.1603 –0.1345 0.2849 0.9087 0.5718 0.4026 2001–2010 (Cluster 3)
Algorithms 17 –0.3012 –0.1403 1.7033 1.6734 0.8211 0.1781 2001–2010 (Cluster 3)
Finite element method 48 –0.0780 –0.1687 0.0668 1.4146 0.1687 0.7887 2001–2010 (Cluster 3)
Laboratory tests 13 –0.1957 –0.1730 0.7334 2.5963 0.5577 0.4358 2001–2010 (Cluster 3)
Rutting 55 –0.2470 –0.2710 0.6332 3.4539 0.3582 0.4312 2001–2010 (Cluster 3)
Hot mix asphalt 53 –0.2995 –0.4117 0.9381 8.0284 0.3459 0.6535 2001–2010 (Cluster 3)
Statistical analysis 46 0.0816 –0.0090 0.0735 0.0041 0.7133 0.0087 2011–2019 (Cluster 4)
Flexible pavements 50 0.2018 –0.0134 0.4379 0.0088 0.9954 0.0044 2011–2019 (Cluster 4)
Traffic speed 56 0.0847 –0.0184 0.0732 0.0156 0.6179 0.0291 2011–2019 (Cluster 4)
Surveys 10 0.1371 –0.0353 0.3921 0.1177 0.8461 0.0561 2011–2019 (Cluster 4)
Traffic delays 33 0.0357 –0.1429 0.0166 1.2114 0.0509 0.8178 2011–2019 (Cluster 4)
Field tests 30 0.2070 –0.1562 0.6414 1.6550 0.6371 0.3629 2011–2019 (Cluster 4)
Estimating 42 0.2598 –0.1581 0.7653 1.2846 0.7276 0.2696 2011–2019 (Cluster 4)
Accuracy 28 0.3553 –0.1902 1.9050 2.4720 0.7526 0.2156 2011–2019 (Cluster 4)
Concrete pavements 52 0.0457 –0.1965 0.0219 1.8367 0.0507 0.9382 2011–2019 (Cluster 4)
Field studies 34 0.3684 –0.2564 1.7067 3.7463 0.5282 0.2559 2011–2019 (Cluster 4)
Traffic congestion 14 0.1839 –0.2793 0.6475 6.7676 0.3011 0.6945 2011–2019 (Cluster 4)
Strategic planning 26 0.1416 –0.2882 0.3152 5.9140 0.1932 0.7999 2011–2019 (Cluster 4)
Performance 27 0.5082 –0.2914 3.9024 5.8118 0.7405 0.2434 2011–2019 (Cluster 4)

Note: The shadings are based on the clusters.
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Table 3. Top 20 Topics Based on Highest Probability and Frequency-Exclusivity (FREX)

Topic 1 (Bridge maintenance) Top Words Topic 11 (Freeway) Top Words

Highest proba: barrier, bridge, concrete, system, highways, maintenance,

performance

Highest prob: system, evaluation, performance, information, freeway,

management

FREXb: barrier, lateral, needs, experimental, hazardous, improving, high-speed FREX: terminal, congestion, capacity, aggregate, freeway, speed

Topic 2 (Travel data) Top Words Topic 12 (Friction and soil science) Top Words

Highest prob: data, travel, performance, modeling, vehicle, driving, evaluation Highest prob: utility, performance, soil, track, rail, soils, areas

FREX: driving, reliability, estimation, pedestrian, modeling, data, bicycle FREX: utility, track, soil, soils, rapid, areas, clay, microcomputer, friction

Topic 3 (Railroad maintenance) Top Words Topic 13 (Multimodal) Top Words

Highest prob: maintenance, evaluation, recent, bus, rail, railroad, program Highest prob: data, modeling, vehicle, performance, effects, design,

management

FREX: recent, railroad, maintenance, computer, effectiveness, noise, bus FREX: longitudinal, modeling, multimodal, speed, prediction, cracking,

adaptive

Topic 4 (Concrete bridge) Top Words Topic 14 (Road safety) Top Words

Highest prob: evaluation, urban, design, bridge, system, stresses, concrete Highest prob: evaluation, car, performance, urban, vehicle, crash, system

FREX: stresses, small, urban, bicycle, public, energy, accidents FREX: road, experience, car, comparative, needs, predicting, safety

Topic 5 (Structural performance) Top Words Topic 15 (Pavement and bridge) Top Words

Highest prob: system, vehicle, evaluation, concrete, stiffness, performance,

vehicles

Highest prob: concrete, related, design, bridge, vehicle, management,

properties

FREX: stiffness, automated, vehicles, crash, vehicle, railway, factors FREX: related, accident, deformation, properties, fatigue, procedures,

strategic

Topic 6 (Pavement modeling) Top Words Topic 16 (Informatics) Top Words

Highest prob: design, concrete, modeling, information, evaluation, system,

management

Highest prob: system, performance, information, data, concrete,

specification, vehicle

FREX: guardrail, area, efficiency, modeling, intermodal, information, binders FREX: specification, real, information, patterns, dynamic, validation

Topic 7 (Choice model) Top Words Topic 17 (Urban planning) Top Words

Highest prob: travel, models, data, design, system, network, choice Highest prob: automobile, travel, design, evaluation, urban, quality,

models

FREX: hot-mix, choice, network, toll, pricing, motor, intersections FREX: automobile, quality, considerations, demand, air, project, freeway

Topic 8 (Rehabilitation) Top Words Topic 18 (System evaluation) Top Words

Highest prob: evaluation, concrete, design, closure, management, discussion,

pavements

Highest prob: concrete, design, bridge, system, rail, used, evaluation

FREX: closure, discussion, flexible, rehabilitation, reinforced, testing,

operations

FREX: used, light, cement, weight, deflectometer, statistical, conditions

Topic 9 (Rail crossing) Top Words Topic 19 (Transit) Top Words

Highest prob: behavior, rail, data, transition, application, signalized, evaluation Highest prob: design, concept, performance, system, evaluation, bus,

management

FREX: transition, signalized, generation, accuracy, routing, tests FREX: concept, trucks, large, structures, pressure, bridges, change

Topic 10 (Barrier system) Top Words Topic 20 (Low-volume road) Top Words

Highest prob: barriers, system, evaluation, travel, potential, service, design Highest prob: roads, evaluation, low-volume, models, sign, system,

performance

FREX: barriers, zones, potential, empirical, proposed, economic, improved FREX: roads, low-volume, sign, traffic, measurement, models, impacts

aHighest prob: is the group of words within each topic with the highest probability.
bFREX determines the frequency (harmonic mean of rank by probability within the topic) and exclusivity (rank by the distribution of topic given word) of

the words by identifying words that distinguish topic.

8 Transportation Research Record 00(0)



level keyword visualization for a 20-topic model. The
expected proportion of the keywords associated with a
topic is shown in Figure 6. High-frequency topics include
Topic 2 (travel data), Topic 7 (choice model), Topic 8
(rehabilitation), Topic 11 (freeway), and Topic 17 (urban
planning).

Table 3 lists the top 20 topics (with the top four words
in each topic) based on the highest probability (Prob)
and frequency-exclusivity (FREX) measures. These mea-
sures are developed to identify terms that define a topic.
‘‘Prob’’ infers the probability that a term occurs in the
topic. The other measure, FREX, considers two criteria:
(i) determining how often a term occurs in each topic,
and (ii) developing adjustment based on the degree to
which the term is restricted to that topic. Table 3 lists
words identified by two key measures: Prob and FREX.

Figure 7 shows the distribution of expected topic pro-
portions by years. Nine topics have been randomly
selected to show the trend over the years. From 1970 to
2019, one topic (road safety) showed an overall upward
trend; the topic included the keywords in Topic 14
(‘‘crash,’’ ‘‘based,’’ ‘‘driving,’’ and ‘‘empirical’’). Another

topic (Topic 12), with the words ‘‘clay,’’ ‘‘microcompu-
ter,’’ ‘‘simulation,’’ and ‘‘discuss,’’ showed a sharp decline
in expected topic proportion after 1970 and then
remained at a consistently low value from 1980 to 2019.
Two topics showed a peak increase from about 1980 to
1990, before decreasing to a value of approximately zero.
One of these topics contained the keywords ‘‘rehabilita-
tion,’’ ‘‘truck,’’ ‘‘closure,’’ and ‘‘road’’ (words in Topic
19); the other topic contained the keywords ‘‘railroad,’’
‘‘closure,’’ ‘‘space,’’ and ‘‘discuss’’ (words in Topic 3).
Another topic showed a sharp increase from about 1970
to 1975 before decreasing to an approximate value of
zero; this topic contained the keywords ‘‘aggregate,’’
‘‘air,’’ and ‘‘small’’ (words in Topic 6). The other remain-
ing topics generally remained consistent throughout the
years, with minor fluctuations over time.

Visualizations of LDA Models

By using metadata, STM functions explain the trends
over the years. As the current study is based on large tex-
tual contents (i.e., the titles have a bag of approximately

Figure 7. Expected topic proportions by year (dotted lines indicate 95% confidence interval values).
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323,000 words, and the abstracts have a bag of approxi-
mately six million words), there is a need to develop an
interactive and comprehensive topic model. Recently the
LDA model has been used primarily to visualize the out-
put of topic models fit. However, the high dimensionality
of the fitted model produces challenges in creating these
visualizations. LDA is normally applied to thousands of
documents, representing combinations of dozens to hun-
dreds of topics, which are modeled as distributions
across thousands of terms. To mitigate these challenges,
interactivity is the best technique to create LDA visuali-
zations. Interactivity is a basic technique that is both
compact and thorough. In this study, the LDAvis pack-
age was employed to develop interactive LDA models
(64). Figures 8 and 9 show interactive visualization of
LDA topic models developed from paper abstracts and
titles, respectively. The research team developed two web
tools to demonstrate these interactive plots (65, 66). The
plots are composed of two sections:

� The left section of the graphics represents a global
perspective on the topic model. The topics are
plotted as circles in a two-dimensional biplot. The
locations of the topics are based on the measures

of principal component analysis. This visualization
shows the distance between topics and projects the
inter-topic distances onto two dimensions. The
overall prevalence of each topic is then encoded
using the areas of the circles to allow sorting the
topics in decreasing order of prevalence (57).

� The right section of the graphics displays a bar
chart (keywords are shown horizontally). The bars
signify the individual terms that are the most suit-
able for interpreting the topics on the left, based on
which topic is currently selected. This allows users
to comprehend the meaning of each topic. The
overlaid bars in the plot indicate corpus-wide and
topic-specific frequency of the term respectively.

� Both sections of this visualization are inter-active.
When the user selects a topic (on the left), the bar
plot on the right highlights the most useful terms
in a way to interpret the topic. Additionally, a
term selection from the bar plot reveals the condi-
tional distribution over topics in the biplot for the
selected term. This functionality allows users to
examine many topic-term relationships efficiently.

The findings of the paper are as follows:

Figure 8. Interactive LDAvis tool for Transportation Research Record abstracts (http://subasish.github.io/pages/trr_abstract/).
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� The co-author network is very complex; it indi-
cates that transportation research co-authorship is
multi-disciplinary and broad.

� In topic proportions, research topics are diversi-
fied; however, travel demand-related studies
showed higher topic proportions than other
topics.

� Top 20 topic groups provide high-frequency words
based on two scores. The words in each topic
group infers the higher presence of these keywords
in each group.

� The interactive visualization of the LDA topic
models indicates that the topics developed from
the journal titles are distinct when compared with
topic models developed from journal abstracts.

Conclusion

In the fields of engineering and science, transportation is
a key research area. Throughout the world, mining big
data for potential trends and patterns has become an
increasingly popular research topic. However, there has
been a lack of research conducted in the field of trans-
portation engineering to mine the data. The challenges

and problems encountered in transportation research
have constantly changed over time. Additionally, the
scope of transportation research has become more
diverse with multifarious inter-disciplinary topics and
sub-topics. As a result, there has been an outbreak of
transportation research publications since around 2010.
In the present study, the research team performed topic
modeling on text containing approximately six million
words from the peer-reviewed abstracts and titles of
30,784 published TRR articles, dating back to 1974. To
identify the research patterns from that period, this study
applied two popular topic models, STM and LDA. This
study also identified the top 20 topics that produced the
highest word frequency measured by two scores: FREX
and high probability. To explore more relevant patterns
in the broad fields of transportation research, this study
presents a unique tool to probe present content and pre-
valence to develop a disaggregated level correlation. In
addition, this study produced two topic model interactive
tools cultivated separately for TRR paper abstracts and
titles. These specific methods have not yet been applied
to the identification of the research trends from TRR
articles. However, the present study demonstrates how
STM, LDA, and other similar methods could be utilized

Figure 9. Interactive LDAvis tool for Transportation Research Record titles (http://subasish.github.io/pages/trr_title/).
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to offer the potential of natural language processing
works in transportation research. Future research can
improve the natural language processing methods used
in the study by incorporating additional databases, such
as state Department of Transportation reports and other
national reports from top transportation journals.

This study identified topics that were both meaningful
and representative; they mostly corresponded to estab-
lished knowledge clusters in the transportation research
field. The identified knowledge clusters unearth an envi-
ronment for further transportation research works. This
methodology is also suitable for other areas related to
transportation engineering. The framework established
in this study can be used in other studies within the
domain of natural language processing.
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